Determine the eigen values/vectors of the matrix 4 3 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Problem 10: Eigenvalues and Eigenvectors

**Objective:** Determine the eigenvalues and eigenvectors of the given matrix.

**Matrix:**
\[
\begin{pmatrix}
2 & 4 \\
3 & -2
\end{pmatrix}
\]

### Explanation:

To find the eigenvalues of a matrix, we solve the characteristic equation:

\[
\text{det}(A - \lambda I) = 0
\]

where \( A \) is the given matrix and \( I \) is the identity matrix of the same dimension. In this case, we have:

\[
A - \lambda I = 
\begin{pmatrix}
2-\lambda & 4 \\
3 & -2-\lambda
\end{pmatrix}
\]

Finding the determinant:

\[
\text{det}(A - \lambda I) = (2-\lambda)(-2-\lambda) - (4 \times 3)
\]

Simplifying this further gives the characteristic polynomial which can be solved for \( \lambda \), the eigenvalues.

Once the eigenvalues are found, substitute each eigenvalue back into:

\[
(A - \lambda I)x = 0
\]

to find the corresponding eigenvectors \( x \).
Transcribed Image Text:### Problem 10: Eigenvalues and Eigenvectors **Objective:** Determine the eigenvalues and eigenvectors of the given matrix. **Matrix:** \[ \begin{pmatrix} 2 & 4 \\ 3 & -2 \end{pmatrix} \] ### Explanation: To find the eigenvalues of a matrix, we solve the characteristic equation: \[ \text{det}(A - \lambda I) = 0 \] where \( A \) is the given matrix and \( I \) is the identity matrix of the same dimension. In this case, we have: \[ A - \lambda I = \begin{pmatrix} 2-\lambda & 4 \\ 3 & -2-\lambda \end{pmatrix} \] Finding the determinant: \[ \text{det}(A - \lambda I) = (2-\lambda)(-2-\lambda) - (4 \times 3) \] Simplifying this further gives the characteristic polynomial which can be solved for \( \lambda \), the eigenvalues. Once the eigenvalues are found, substitute each eigenvalue back into: \[ (A - \lambda I)x = 0 \] to find the corresponding eigenvectors \( x \).
Expert Solution
Step 1

Consider the matrix A=2432

First we will find eigen value of the matrix A

The eigenvalues of A are the roots of the characteristic equation detA-λI=0

Hence,

detAλI=0det2432λ1001=0det2432λ00λ=0det2λ432λ=0

Now,

2λ2λ12=042λ+2λ+λ2=0λ24=0λ=4 and 4

Therefore, eigenvalues of the matrix A=2432 is λ1=4 and λ2=4.

Step 2

Now, we will find the eigenvector corresponding to eigenvalues λ1=4 and λ2=4 of the given matrix A

We know that the eigenvector corresponding to every eigenvalue λ is given by  AλIx=0

Hence, the eigenvector corresponding to every eigenvalue λ1=4 is given by  A4Ix=0

Now, solve A4Ix=0

A4Ix=0243241001x1x2=0024324004x1x2=002436x1x2=002x1+4x23x16x2=00

Hence, 2x1+4x2=03x16x2=0.....1

Now, solve the system (1), we get

x1=2 and x2=1

Hence, the eigenvector corresponding to every eigenvalue λ1=4 is x=x1x2=21

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,