Compute eigenvalues and eigenvectors for the matrix: GJ O λι = ί λ = - 31 = A₁ = 1 A₂ = -1 --0--0 = λ = -1 λ = 1 = --0--0 = A₁ = i A₂ = -i = x2 = -D--N x1 = Ο λ = ί λ = -1 --8--A =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Compute eigenvalues and eigenvectors for the matrix:
GJ
O
λι = ί λ = -
31 =
A₁ = 1 A₂ = -1
--0--0
=
λ = -1 λ = 1
=
--0--0
=
A₁ = i A₂ = -i
=
x₂ =
-D--N
x1 =
Ο λ = ί λ = -1
--8--A
=
Transcribed Image Text:Compute eigenvalues and eigenvectors for the matrix: GJ O λι = ί λ = - 31 = A₁ = 1 A₂ = -1 --0--0 = λ = -1 λ = 1 = --0--0 = A₁ = i A₂ = -i = x₂ = -D--N x1 = Ο λ = ί λ = -1 --8--A =
Find the inverse Laplace transform of the following function
25²
Y(s) =
2
s +65 +13
y(t) = 25(t)- (12 e 3 cos2t +5e-3¹sin2t)u(t - 3)
y(t) = 2 (12e-³¹cos2t +5e-3¹sin2t)u(t - 3)
12e-3¹cos2t +5e-3¹ sin2t
y(t) =
S
Oy(t)=28(t) - 12cos2t +5sin2t
y(t) = 28(t)- 12e-³1 cos2t +5e-3¹sin2t
Transcribed Image Text:Find the inverse Laplace transform of the following function 25² Y(s) = 2 s +65 +13 y(t) = 25(t)- (12 e 3 cos2t +5e-3¹sin2t)u(t - 3) y(t) = 2 (12e-³¹cos2t +5e-3¹sin2t)u(t - 3) 12e-3¹cos2t +5e-3¹ sin2t y(t) = S Oy(t)=28(t) - 12cos2t +5sin2t y(t) = 28(t)- 12e-³1 cos2t +5e-3¹sin2t
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,