Complete the steps by applying trig identities to show that the left hand side of the equation is equivalent to the right hand side. tan? z 1t cat Steps: 1+tacr = tan z

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
This is not a graded question. There are 4 steps.
2:41 ) & N I A A O
Q * * 4E 53%
illeenisd.schoology.com
3
May 5: Practice 6
1 of 5
Complete the steps by applying trig ldentities to show that the left hand side of the equation
equivalent to the right hand side.
1+twr - tan? z
1j cot'
Steps:
1+tan" r
= tan"
: Recz1seel
: tan z- cot2
: - sin r -
: sec r.
1+cul t-cot
::
sin a
: sin' æ
: -i
: . cot?
: se
::
Nex
II
+
Transcribed Image Text:2:41 ) & N I A A O Q * * 4E 53% illeenisd.schoology.com 3 May 5: Practice 6 1 of 5 Complete the steps by applying trig ldentities to show that the left hand side of the equation equivalent to the right hand side. 1+twr - tan? z 1j cot' Steps: 1+tan" r = tan" : Recz1seel : tan z- cot2 : - sin r - : sec r. 1+cul t-cot :: sin a : sin' æ : -i : . cot? : se :: Nex II +
Expert Solution
Step 1

We have to prove the identity 1+tan2x1+cot2x=tan2x.

Use formula tanx=sinxcosx and cotx=cosxsinx

Take left hand side

1+tan2x1+cot2x=1+sinxcosx21+cosxsinx2=1+sin2xcos2x1+cos2xsin2x=cos2x+sin2xcos2xsin2x+cos2xsin2x=cos2x+sin2xcos2x×sin2xsin2x+cos2xUse property abcd=ab×dc=sin2xcos2x=tan2x=RHS

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,