Complete the function calculate, which computes and returns the value of the following sum for the given arguments, x and n. n Σ ( ² × ²¹) = ( ² × ²¹ ) + ( ²⁄² × ²² ) + ( ³³² × ²³) + - + ( ² × ²¹) ... i=1 Assume n ≥ 1. Examples: Function Call calculate (5,4) calculate (2,7) Return Value [ ] 2.0256000000000003 140.0 calculate (7,2) 0.6122448979591837 calculate (3,9) 22.196311537875324 1 def calculate (x, n): 2 3 4 5 # Test cases 6 print (calculate (5, 4)) 7 print (calculate (2, 7)) return 0 # DELETE THIS LINE and start coding here. # Remember: end all of your functions with a return statement, not a print statement! 8 print (calculate (7, 9 print (calculate (3, 2)) 9))

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
**Mathematics and Programming: Implementing a Summation Function**

This section involves completing the function `calculate`, which computes and returns the value of a specific summation for given arguments, \( x \) and \( n \).

### Mathematical Definition

The sum is defined as:

\[
\sum_{i=1}^{n} \left( \frac{i^2}{x^i} \times 2^i \right) = \left( \frac{1^2}{x^1} \times 2^1 \right) + \left( \frac{2^2}{x^2} \times 2^2 \right) + \left( \frac{3^2}{x^3} \times 2^3 \right) + \ldots + \left( \frac{n^2}{x^n} \times 2^n \right)
\]

Where \( n \geq 1 \).

### Examples

| Function Call        | Return Value                  |
|----------------------|-------------------------------|
| `calculate(5, 4)`    | 2.0256000000000003            |
| `calculate(2, 7)`    | 140.0                         |
| `calculate(7, 2)`    | 0.6122448979591837            |
| `calculate(3, 9)`    | 22.196311537875324            |

### Code Implementation

```python
def calculate(x, n):
    return 0  # DELETE THIS LINE and start coding here.
    # Remember: end all of your functions with a return statement, not a print statement!

# Test cases
print(calculate(5, 4))
print(calculate(2, 7))
print(calculate(7, 2))
print(calculate(3, 9))
```

In this coding problem, you need to replace the placeholder `return 0` with the logic that computes the defined summation. After implementing the function, you can test it using the provided test cases.

### Explanation of the Task

1. **Function Definition**: The function `calculate` takes two parameters: `x` and `n`.
2. **Summation Logic**: To compute the summation, the function must loop over the range from 1 to `n`, evaluating the expression for each \( i \) and accumulating
Transcribed Image Text:**Mathematics and Programming: Implementing a Summation Function** This section involves completing the function `calculate`, which computes and returns the value of a specific summation for given arguments, \( x \) and \( n \). ### Mathematical Definition The sum is defined as: \[ \sum_{i=1}^{n} \left( \frac{i^2}{x^i} \times 2^i \right) = \left( \frac{1^2}{x^1} \times 2^1 \right) + \left( \frac{2^2}{x^2} \times 2^2 \right) + \left( \frac{3^2}{x^3} \times 2^3 \right) + \ldots + \left( \frac{n^2}{x^n} \times 2^n \right) \] Where \( n \geq 1 \). ### Examples | Function Call | Return Value | |----------------------|-------------------------------| | `calculate(5, 4)` | 2.0256000000000003 | | `calculate(2, 7)` | 140.0 | | `calculate(7, 2)` | 0.6122448979591837 | | `calculate(3, 9)` | 22.196311537875324 | ### Code Implementation ```python def calculate(x, n): return 0 # DELETE THIS LINE and start coding here. # Remember: end all of your functions with a return statement, not a print statement! # Test cases print(calculate(5, 4)) print(calculate(2, 7)) print(calculate(7, 2)) print(calculate(3, 9)) ``` In this coding problem, you need to replace the placeholder `return 0` with the logic that computes the defined summation. After implementing the function, you can test it using the provided test cases. ### Explanation of the Task 1. **Function Definition**: The function `calculate` takes two parameters: `x` and `n`. 2. **Summation Logic**: To compute the summation, the function must loop over the range from 1 to `n`, evaluating the expression for each \( i \) and accumulating
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Declaring and Defining the Function
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education