CO2(g) + H2(g) « H2O(g) + CO(g) When H2(g) is mixed with CO2(g) at 2,000 K, equilibrium is achieved according to the equation above. In one experiment, the following equilibrium concentrations were measured. [H2] = 0.20 mol/L [CO2] = 0.30 mol/L [H2O] = [CO] = 0.55 mol/L (a) What is the mole fraction of CO(g) in the equilibrium mixture? (b) Using the equilibrium concentrations given above, calculate the value of Kc, the equilibrium constant for the reaction. (c) Determine Kp in terms of Kc for this system. (d) When the system is cooled from 2,000 K to a lower temperature, 30.0 percent of the CO(g) is converted back to CO2(g). Calculate the value of Kc at this lower temperature. (e) In a different experiment, 0.50 mole of H2(g) is mixed with 0.50 mole of CO2(g) in a 3.0-liter reaction vessel at 2,000 K. Calculate the equilibrium concentration, in moles per liter, of CO(g) at this temperature. Note: Please answer just D and E. Thank you
CO2(g) + H2(g) « H2O(g) + CO(g)
When H2(g) is mixed with CO2(g) at 2,000 K, equilibrium is achieved according to the equation above. In one experiment, the following equilibrium concentrations were measured.
[H2] = 0.20 mol/L
[CO2] = 0.30 mol/L
[H2O] = [CO] = 0.55 mol/L
(a) What is the mole fraction of CO(g) in the equilibrium mixture?
(b) Using the equilibrium concentrations given above, calculate the value of Kc, the equilibrium constant for the reaction.
(c) Determine Kp in terms of Kc for this system.
(d) When the system is cooled from 2,000 K to a lower temperature, 30.0 percent of the CO(g) is converted back to CO2(g). Calculate the value of Kc at this lower temperature.
(e) In a different experiment, 0.50 mole of H2(g) is mixed with 0.50 mole of CO2(g) in a 3.0-liter reaction vessel at 2,000 K. Calculate the equilibrium concentration, in moles per liter, of CO(g) at this temperature.
Note: Please answer just D and E. Thank you
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images