Click and drag the steps that are required to prove 1k+ 2k +...+nk is O(nk + 1) to their corresponding step numbers. Step 1 Step 2 Using a law of exponentiation, we simplify n⋅nk=nk+1 Using a law of exponentiation, we simplify We observe that all the integers from 1 to n are at most n, hence 1+2++ n ≤ n* + n* + + n*. Step 3 We can simplify the sum by adding the exponents: nk+n++nk =nk+k+.+k=nk Step 4 We observe that all the integers from 1 to n are at most n, hence 1+2++ n ≥ n* + n* + ... + n*. By combining our calculations, we get 1 + 2k ++*** for all n ≥ 1. We have verified the definition of what it means for 1+2++nk to be O(n*+1). By combining our calculations, we get 1 +2*++n* s*+1 for all n ≥1. We have verified the definition of what it means for 1+2++nk to be O(n+1). Since there are exactly n equal terms in the sum, we can write the sum as a simple product: n+n++n* =n⋅nk.
Click and drag the steps that are required to prove 1k+ 2k +...+nk is O(nk + 1) to their corresponding step numbers. Step 1 Step 2 Using a law of exponentiation, we simplify n⋅nk=nk+1 Using a law of exponentiation, we simplify We observe that all the integers from 1 to n are at most n, hence 1+2++ n ≤ n* + n* + + n*. Step 3 We can simplify the sum by adding the exponents: nk+n++nk =nk+k+.+k=nk Step 4 We observe that all the integers from 1 to n are at most n, hence 1+2++ n ≥ n* + n* + ... + n*. By combining our calculations, we get 1 + 2k ++*** for all n ≥ 1. We have verified the definition of what it means for 1+2++nk to be O(n*+1). By combining our calculations, we get 1 +2*++n* s*+1 for all n ≥1. We have verified the definition of what it means for 1+2++nk to be O(n+1). Since there are exactly n equal terms in the sum, we can write the sum as a simple product: n+n++n* =n⋅nk.
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter1: Fundamental Concepts Of Algebra
Section1.2: Exponents And Radicals
Problem 91E
Related questions
Question
Please help me with these two questions. I am having trouble understanding what to do
Thank you
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning