Civen that A and B are row equivalent. -1/6 100 -1/6 0 1 0 4 -6 3 1 -3/2 0 0 0 2 A = -2 -3 -2 0 3 1 0. B = 1/3 0 0 1 3 1 1 -8 12 -8 0 -2 2 1/3 (a) Find the rank of A. (b) Find a basis for the row space of A. (c) Find a basis for the column space of A.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Given that \( A \) and \( B \) are row equivalent:

\[ A = \begin{bmatrix} 4 & -6 & 0 & 3 & 5 & 2 \\ 2 & -3 & -2 & 0 & 3 & 1 \\ -2 & 3 & 2 & 1 & 2 & 1 \\ -8 & 12 & -8 & 0 & -2 & 2 \end{bmatrix} \]

\[ B = \begin{bmatrix} 1 & -\frac{3}{2} & 0 & 0 & 0 & -\frac{1}{6} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{6} \\ 0 & 0 & 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \end{bmatrix} \]

**Questions:**

(a) Find the rank of \( A \).

(b) Find a basis for the row space of \( A \).

(c) Find a basis for the column space of \( A \).

(d) Find a basis for the nullspace of \( A \).

(e) Are the first 4 columns of \( A \) linearly independent? Explain your answer.

(f) Is the last column of \( A \) in the span of column 1, 3, 4, and 5? Explain your answer.
Transcribed Image Text:Given that \( A \) and \( B \) are row equivalent: \[ A = \begin{bmatrix} 4 & -6 & 0 & 3 & 5 & 2 \\ 2 & -3 & -2 & 0 & 3 & 1 \\ -2 & 3 & 2 & 1 & 2 & 1 \\ -8 & 12 & -8 & 0 & -2 & 2 \end{bmatrix} \] \[ B = \begin{bmatrix} 1 & -\frac{3}{2} & 0 & 0 & 0 & -\frac{1}{6} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{6} \\ 0 & 0 & 0 & 1 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{1}{3} \end{bmatrix} \] **Questions:** (a) Find the rank of \( A \). (b) Find a basis for the row space of \( A \). (c) Find a basis for the column space of \( A \). (d) Find a basis for the nullspace of \( A \). (e) Are the first 4 columns of \( A \) linearly independent? Explain your answer. (f) Is the last column of \( A \) in the span of column 1, 3, 4, and 5? Explain your answer.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,