City Cab, Inc., uses two dispatchers to handle requests for service and to dispatch the cabs. The telephone calls that are made to City Cab use a common telephone number. When both dispatchers are busy, the caller hears a busy signal; no waiting is allowed. Callers who receive a busy signal can call back later or call another cab service. Assume that the arrival of calls follows a Poisson probability distribution, with a mean of 40 calls per hour, and that each dispatcher can handle a mean of 30 calls per hour. The example presented meets which of these conditions? and why? 1. Poisson arrivals and exponential service time 2. Poisson arrivals and non-exponential service time.
City Cab, Inc., uses two dispatchers to handle requests for service and to dispatch the cabs. The telephone calls that are made to City Cab use a common telephone number. When both dispatchers are busy, the caller hears a busy signal; no waiting is allowed. Callers who receive a busy signal can call back later or call another cab service. Assume that the arrival of calls follows a Poisson probability distribution, with a mean of 40 calls per hour, and that each dispatcher can handle a mean of 30 calls per hour. The example presented meets which of these conditions? and why? 1. Poisson arrivals and exponential service time 2. Poisson arrivals and non-exponential service time.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
City Cab, Inc., uses two dispatchers to handle requests for service and to dispatch the cabs. The telephone calls that are made to City Cab use a common telephone number. When both dispatchers are busy, the caller hears a busy signal; no waiting is allowed. Callers who receive a busy signal can call back later or call another cab service. Assume that the arrival of calls follows a Poisson
The example presented meets which of these conditions? and why?
1. Poisson arrivals and exponential service time
2. Poisson arrivals and non-exponential service time.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON