Choose, from the list below, correct expressions for the overall rate law which are completely consistent with the above mechanism. d[Br-BrO2]/dt = k[Br-][BrO3-][H+]2 -d[Br-]/dt = k[Br-][BrO3-]2[H+] -d[H+]/dt = k[BrO3-][Br-][H+]2 k[Br-][H+]2[BrO3-] = -d[Br-]/dt -d[BrO3-]/dt = k[H+]2[BrO3-][Br-] -d[Br-]/dt = k[Br-][H+]2[BrO3-] Tries 0/99 For each of the given rate expressions choose the correct expression for the rate constant (k) from the list below. A. k = k1−k-1
5Br-(aq) + BrO3-(aq) + 6H+(aq) 3Br2(l) + 3H2O(l) |
The above reaction is expected to obey the mechanism:
BrO3-(aq) + H+(aq) HBrO3(aq) Fast equilibrium HBrO3(aq) + H+(aq) H2BrO3+(aq) Fast equilibrium H2BrO3+(aq) + Br-(aq) (Br-BrO2)(aq) + H2O(l) Slow (Br-BrO2)(aq) + 4H+(aq) + 4Br-(aq) products Fast |
Choose, from the list below, correct expressions for the overall rate law which are completely consistent with the above mechanism.
d[Br-BrO2]/dt = k[Br-][BrO3-][H+]2
-d[Br-]/dt = k[Br-][BrO3-]2[H+]
-d[H+]/dt = k[BrO3-][Br-][H+]2
k[Br-][H+]2[BrO3-] = -d[Br-]/dt
-d[BrO3-]/dt = k[H+]2[BrO3-][Br-]
-d[Br-]/dt = k[Br-][H+]2[BrO3-]
Tries 0/99 |
For each of the given rate expressions choose the correct expression for the rate constant (k) from the list below.
A. k = k1−k-1
B. k = 5×([(k1k2k3)/(k-1k-2)])
C. k = 6×([(k1k2k3)/(k-1k-2)])
D. k = 6×[(k1+k2+k3)/(k-1+k-2)]
E. k = k3
F. none of the above
-d[H+]/dt
-d[Br-]/dt
-d[BrO3-]/dt
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images