**Reaction Order and Rate Constant Calculation** **Multiple Choice Options:** - **c.** The reaction is second order, and k is \(2.75 \times 10^{-3} \, \text{l/Ms}\). - **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\). - **e.** The reaction is first order, and k is \(-2.75 \times 10^{-3} \, \text{s}^{-1}\). **Selected Option:** - **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\). **Problem Description:** A **first order** reaction (\(A \rightarrow B\)) starts with an initial concentration \([A]_0 = 0.400 \, \text{M}\). After 2.25 seconds, the concentration \([A]\) is measured to be 0.060 M. Calculate the rate constant for the reaction. The answer should be in \(\text{s}^{-1}\) with three significant figures. **Provided Answer:** - **6.29** --- To solve this problem, one would typically use the first order reaction formula: \[ \ln\left(\frac{[A]_0}{[A]}\right) = kt \] Plugging in the values: - \([A]_0 = 0.400 \, \text{M}\) - \([A] = 0.060 \, \text{M}\) - \(t = 2.25 \, \text{s}\) The rate constant, \(k\), can be calculated as follows: \[ k = \frac{\ln\left(\frac{0.400}{0.060}\right)}{2.25} \] This calculation yields a rate constant, \(k\), consistent with the values expected of a correctly computed first order reaction rate constant.
**Reaction Order and Rate Constant Calculation** **Multiple Choice Options:** - **c.** The reaction is second order, and k is \(2.75 \times 10^{-3} \, \text{l/Ms}\). - **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\). - **e.** The reaction is first order, and k is \(-2.75 \times 10^{-3} \, \text{s}^{-1}\). **Selected Option:** - **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\). **Problem Description:** A **first order** reaction (\(A \rightarrow B\)) starts with an initial concentration \([A]_0 = 0.400 \, \text{M}\). After 2.25 seconds, the concentration \([A]\) is measured to be 0.060 M. Calculate the rate constant for the reaction. The answer should be in \(\text{s}^{-1}\) with three significant figures. **Provided Answer:** - **6.29** --- To solve this problem, one would typically use the first order reaction formula: \[ \ln\left(\frac{[A]_0}{[A]}\right) = kt \] Plugging in the values: - \([A]_0 = 0.400 \, \text{M}\) - \([A] = 0.060 \, \text{M}\) - \(t = 2.25 \, \text{s}\) The rate constant, \(k\), can be calculated as follows: \[ k = \frac{\ln\left(\frac{0.400}{0.060}\right)}{2.25} \] This calculation yields a rate constant, \(k\), consistent with the values expected of a correctly computed first order reaction rate constant.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
100%
![**Reaction Order and Rate Constant Calculation**
**Multiple Choice Options:**
- **c.** The reaction is second order, and k is \(2.75 \times 10^{-3} \, \text{l/Ms}\).
- **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\).
- **e.** The reaction is first order, and k is \(-2.75 \times 10^{-3} \, \text{s}^{-1}\).
**Selected Option:**
- **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\).
**Problem Description:**
A **first order** reaction (\(A \rightarrow B\)) starts with an initial concentration \([A]_0 = 0.400 \, \text{M}\). After 2.25 seconds, the concentration \([A]\) is measured to be 0.060 M. Calculate the rate constant for the reaction. The answer should be in \(\text{s}^{-1}\) with three significant figures.
**Provided Answer:**
- **6.29**
---
To solve this problem, one would typically use the first order reaction formula:
\[ \ln\left(\frac{[A]_0}{[A]}\right) = kt \]
Plugging in the values:
- \([A]_0 = 0.400 \, \text{M}\)
- \([A] = 0.060 \, \text{M}\)
- \(t = 2.25 \, \text{s}\)
The rate constant, \(k\), can be calculated as follows:
\[ k = \frac{\ln\left(\frac{0.400}{0.060}\right)}{2.25} \]
This calculation yields a rate constant, \(k\), consistent with the values expected of a correctly computed first order reaction rate constant.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F83487220-e3b7-46aa-96f9-171ca8a3e4b1%2F83b99a55-0b4a-41d4-85ef-91d3472dbbdd%2Fn043rwi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Reaction Order and Rate Constant Calculation**
**Multiple Choice Options:**
- **c.** The reaction is second order, and k is \(2.75 \times 10^{-3} \, \text{l/Ms}\).
- **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\).
- **e.** The reaction is first order, and k is \(-2.75 \times 10^{-3} \, \text{s}^{-1}\).
**Selected Option:**
- **d.** The reaction is first order, and k is \(2.75 \times 10^{-3} \, \text{s}^{-1}\).
**Problem Description:**
A **first order** reaction (\(A \rightarrow B\)) starts with an initial concentration \([A]_0 = 0.400 \, \text{M}\). After 2.25 seconds, the concentration \([A]\) is measured to be 0.060 M. Calculate the rate constant for the reaction. The answer should be in \(\text{s}^{-1}\) with three significant figures.
**Provided Answer:**
- **6.29**
---
To solve this problem, one would typically use the first order reaction formula:
\[ \ln\left(\frac{[A]_0}{[A]}\right) = kt \]
Plugging in the values:
- \([A]_0 = 0.400 \, \text{M}\)
- \([A] = 0.060 \, \text{M}\)
- \(t = 2.25 \, \text{s}\)
The rate constant, \(k\), can be calculated as follows:
\[ k = \frac{\ln\left(\frac{0.400}{0.060}\right)}{2.25} \]
This calculation yields a rate constant, \(k\), consistent with the values expected of a correctly computed first order reaction rate constant.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: interpretation of question
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY