Reactions of Ethers
Ethers (R-O-R’) are compounds formed by replacing hydrogen atoms of an alcohol (R-OH compound) or a phenol (C6H5OH) by an aryl/ acyl group (functional group after removing single hydrogen from an aromatic ring). In this section, reaction, preparation and behavior of ethers are discussed in the context of organic chemistry.
Epoxides
Epoxides are a special class of cyclic ethers which are an important functional group in organic chemistry and generate reactive centers due to their unusual high reactivity. Due to their high reactivity, epoxides are considered to be toxic and mutagenic.
Williamson Ether Synthesis
An organic reaction in which an organohalide and a deprotonated alcohol forms ether is known as Williamson ether synthesis. Alexander Williamson developed the Williamson ether synthesis in 1850. The formation of ether in this synthesis is an SN2 reaction.
Draw a structural formula for the product of each SN2 reaction. Where configuration of the starting material is given, show the configuration of the product.
SN2 reaction: It is a nucleophilic substitution reaction in which the rate determining step depends on both alkyl halide and the nucleophile present. The bond making and the bond breaking process happens simultaneously in this reaction, which results in the inversion of configuration.
Rate = k [alkylhalide] x [nucleophile]
Structure of the substrate plays a major role in SN2 reaction. If the substrate is more substituted the rate of the reaction becomes slower. Since the mechanism of SN2 reaction proceeds through backside attack on the substrate it depends on steric factor of reactant and nucleophile.
Step by step
Solved in 2 steps with 1 images