Chapter 28, Problem 001 A proton traveling at 23.8° with respect to the direction of a magnetic field of strength 1.98 mT experiences a magnetic force of 9.59 x 10-17 N. Calculate (a) the proton's speed and (b) its kinetic energy in electron- volts.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Chapter 28, Problem 001
A proton traveling at 23.8° with respect to the direction of a magnetic
field of strength 1.98 mT experiences a magnetic force of 9.59 × 10-¹7 N.
Calculate (a) the proton's speed and (b) its kinetic energy in electron-
volts.
Chapter 28, Problem 009
In the figure, an electron accelerated from rest through potential
difference V₁=1.06 kV enters the gap between two parallel plates having
separation d = 24.5 mm and potential difference V₂= 99.1 V. The lower
plate is at the lower potential. Neglect fringing and assume that the
electron's velocity vector is perpendicular to the electric field vector
between the plates. In unit-vector notation, what uniform magnetic field
allows the electron to travel in a straight line in the gap?
[₁}v₂
Transcribed Image Text:Chapter 28, Problem 001 A proton traveling at 23.8° with respect to the direction of a magnetic field of strength 1.98 mT experiences a magnetic force of 9.59 × 10-¹7 N. Calculate (a) the proton's speed and (b) its kinetic energy in electron- volts. Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V₁=1.06 kV enters the gap between two parallel plates having separation d = 24.5 mm and potential difference V₂= 99.1 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? [₁}v₂
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Magnetic field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON