Carbon dioxide flows steadily through a varying cross- sectional-area duct such as a nozzle at a mass flow rate of 3 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the following parameters at each location along the duct that corresponds to a pressure drop of 200 kPa: (i) density; (ii) velocity; (iii) flow area; (iv) mach number. You may assume: • Carbon dioxide is an ideal gas with constant specific heats at room temperature; • Flow through the duct is steady, one-dimensional and isentropic. Use c. 0 846 kJ/kgk and k = 1.289 throughout the calculations, which are the constant-pressure specific heat and specific heat ratio values of carbon dioxide at room temperature. The gas constant of carbon dioxide is R = 0.1889 kJ/kg K.
Carbon dioxide flows steadily through a varying cross- sectional-area duct such as a nozzle at a mass flow rate of 3 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the following parameters at each location along the duct that corresponds to a pressure drop of 200 kPa: (i) density; (ii) velocity; (iii) flow area; (iv) mach number. You may assume: • Carbon dioxide is an ideal gas with constant specific heats at room temperature; • Flow through the duct is steady, one-dimensional and isentropic. Use c. 0 846 kJ/kgk and k = 1.289 throughout the calculations, which are the constant-pressure specific heat and specific heat ratio values of carbon dioxide at room temperature. The gas constant of carbon dioxide is R = 0.1889 kJ/kg K.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
![Carbon dioxide flows steadily through a varying cross-
sectional-area duct such as a nozzle at a mass flow rate of 3
kg/s. The carbon dioxide enters the duct at a pressure of 1400
kPa and 200°C with a low velocity, and it expands in the nozzle
to a pressure of 200 kPa. The duct is designed so that the flow
can be approximated as isentropic.
Determine the following parameters at each location along the
duct that corresponds to a pressure drop of 200 kPa:
(i)
density;
(ii)
velocity:
(iii)
flow area;
(iv)
mach number.
You may assume:
• Carbon dioxide is an ideal gas with constant specific heats at
room temperature;
• Flow through the duct is steady, one-dimensional and isentropic.
Use c, 0 846 kJ/kgk andk = 1.289 throughout the calculations,
which are the constant-pressure specific heat and specific heat
ratio values of carbon dioxide at room temperature. The gas
constant of carbon dioxide is R = 0.1889 kJ/kg K.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4bcbbb81-f326-46b6-a5d0-9dc42bdfd898%2Fbf1b1aaf-ec55-4688-8089-5ff9c04aae80%2Fu4p37cf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Carbon dioxide flows steadily through a varying cross-
sectional-area duct such as a nozzle at a mass flow rate of 3
kg/s. The carbon dioxide enters the duct at a pressure of 1400
kPa and 200°C with a low velocity, and it expands in the nozzle
to a pressure of 200 kPa. The duct is designed so that the flow
can be approximated as isentropic.
Determine the following parameters at each location along the
duct that corresponds to a pressure drop of 200 kPa:
(i)
density;
(ii)
velocity:
(iii)
flow area;
(iv)
mach number.
You may assume:
• Carbon dioxide is an ideal gas with constant specific heats at
room temperature;
• Flow through the duct is steady, one-dimensional and isentropic.
Use c, 0 846 kJ/kgk andk = 1.289 throughout the calculations,
which are the constant-pressure specific heat and specific heat
ratio values of carbon dioxide at room temperature. The gas
constant of carbon dioxide is R = 0.1889 kJ/kg K.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY