can you Construct cayley table for dihedral six-gon given the element is {e,a,a^2,a^3,a^4,a^5,f,af,a^2f,a^3f,a^4f,a^5f}. then show that dihedral six-gon (D6) is non commutative based on the cayley table

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you Construct cayley table for dihedral six-gon given the element is {e,a,a^2,a^3,a^4,a^5,f,af,a^2f,a^3f,a^4f,a^5f}.

then show that dihedral six-gon (D6) is non commutative based on the cayley table

the image is the example of the cayley table:

Cayley table of D4
e
ro
ro
ro
rel
re2
re3
re4
e
e
ro
n²
n3
rel
re2
re3
re4
ro
ro
r²
r³
e
re2
re3
re4
rel
25252
r²
r²
r³
e
ro
re3
re4
rel
re2
n3³
e
ro
22
re4
re1
re2
re3
rel
rel
re4
re3
re2
e
ro
re2
re2
re1
re4
re3
n²
e
CCE
re3
re3
re2
rel
re4
n²
r²
e
r.³
re4
re4
re3
re2
rel
|| ગ
r²
r²
e
Transcribed Image Text:Cayley table of D4 e ro ro ro rel re2 re3 re4 e e ro n² n3 rel re2 re3 re4 ro ro r² r³ e re2 re3 re4 rel 25252 r² r² r³ e ro re3 re4 rel re2 n3³ e ro 22 re4 re1 re2 re3 rel rel re4 re3 re2 e ro re2 re2 re1 re4 re3 n² e CCE re3 re3 re2 rel re4 n² r² e r.³ re4 re4 re3 re2 rel || ગ r² r² e
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,