The image contains a handwritten mathematical expression followed by a breakdown of its derivatives, commonly used in calculus. ### Original Expression: 1. \( x^2 (\sqrt{x-2})(1+x^2)^5 (2-x)^4 \) ### Derivatives: - The expression is expanded using logarithmic differentiation as follows: #### Logarithmic Components: - \( 2m(x) \) - \( 1m(x^2) \ln(\sqrt{x-2}) \) - \( 5 \ln(1+x^2) \) - \( 4 \ln(2-x) \) ### Derivative Breakdown: 1. \( 2 \cdot \frac{1}{x} \) 2. \( + \frac{1}{\sqrt{x-2}} \cdot \left( \frac{1}{2\sqrt{x}} \right) \) 3. \( + 5 \cdot \frac{1}{1+x^2} \cdot (2x) \) 4. \( + 4 \cdot \frac{1}{2-x} \cdot (-1) \) This expression and its derivatives could be used in an educational setting to illustrate principles such as product rule, chain rule, and logarithmic differentiation in calculus.
The image contains a handwritten mathematical expression followed by a breakdown of its derivatives, commonly used in calculus. ### Original Expression: 1. \( x^2 (\sqrt{x-2})(1+x^2)^5 (2-x)^4 \) ### Derivatives: - The expression is expanded using logarithmic differentiation as follows: #### Logarithmic Components: - \( 2m(x) \) - \( 1m(x^2) \ln(\sqrt{x-2}) \) - \( 5 \ln(1+x^2) \) - \( 4 \ln(2-x) \) ### Derivative Breakdown: 1. \( 2 \cdot \frac{1}{x} \) 2. \( + \frac{1}{\sqrt{x-2}} \cdot \left( \frac{1}{2\sqrt{x}} \right) \) 3. \( + 5 \cdot \frac{1}{1+x^2} \cdot (2x) \) 4. \( + 4 \cdot \frac{1}{2-x} \cdot (-1) \) This expression and its derivatives could be used in an educational setting to illustrate principles such as product rule, chain rule, and logarithmic differentiation in calculus.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
100%
Could you look through this problem and tell me what I did
![The image contains a handwritten mathematical expression followed by a breakdown of its derivatives, commonly used in calculus.
### Original Expression:
1. \( x^2 (\sqrt{x-2})(1+x^2)^5 (2-x)^4 \)
### Derivatives:
- The expression is expanded using logarithmic differentiation as follows:
#### Logarithmic Components:
- \( 2m(x) \)
- \( 1m(x^2) \ln(\sqrt{x-2}) \)
- \( 5 \ln(1+x^2) \)
- \( 4 \ln(2-x) \)
### Derivative Breakdown:
1. \( 2 \cdot \frac{1}{x} \)
2. \( + \frac{1}{\sqrt{x-2}} \cdot \left( \frac{1}{2\sqrt{x}} \right) \)
3. \( + 5 \cdot \frac{1}{1+x^2} \cdot (2x) \)
4. \( + 4 \cdot \frac{1}{2-x} \cdot (-1) \)
This expression and its derivatives could be used in an educational setting to illustrate principles such as product rule, chain rule, and logarithmic differentiation in calculus.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5524ced8-dbb7-420d-adff-d1944209c733%2Fdff6dd9d-8345-40f6-b254-cc89ac2ad80f%2Fabr692m.jpeg&w=3840&q=75)
Transcribed Image Text:The image contains a handwritten mathematical expression followed by a breakdown of its derivatives, commonly used in calculus.
### Original Expression:
1. \( x^2 (\sqrt{x-2})(1+x^2)^5 (2-x)^4 \)
### Derivatives:
- The expression is expanded using logarithmic differentiation as follows:
#### Logarithmic Components:
- \( 2m(x) \)
- \( 1m(x^2) \ln(\sqrt{x-2}) \)
- \( 5 \ln(1+x^2) \)
- \( 4 \ln(2-x) \)
### Derivative Breakdown:
1. \( 2 \cdot \frac{1}{x} \)
2. \( + \frac{1}{\sqrt{x-2}} \cdot \left( \frac{1}{2\sqrt{x}} \right) \)
3. \( + 5 \cdot \frac{1}{1+x^2} \cdot (2x) \)
4. \( + 4 \cdot \frac{1}{2-x} \cdot (-1) \)
This expression and its derivatives could be used in an educational setting to illustrate principles such as product rule, chain rule, and logarithmic differentiation in calculus.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1 Formulae
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning