### Integration by Parts Example The problem is to evaluate the integral: \[ \int e^{2x} \cos x \, dx \] **Step 1: Choose \( u \) and \( dv \)** Let: \[ u = e^{2x} \] \[ dv = \cos x \, dx \] Then, the derivatives are: \[ du = 2e^{2x} \, dx \] \[ v = \sin x \] **Step 2: Apply Integration by Parts** Integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Applying the formula: \[ e^{2x} \sin x - \int \sin x \cdot 2e^{2x} \, dx \] **Step 3: Repeat Integration by Parts** Now we handle the integral: \[ \int \sin x \cdot 2e^{2x} \, dx \] Choose: \[ u = e^{2x} \] \[ dv = \sin x \, dx \] Then: \[ du = 2e^{2x} \, dx \] \[ v = -\cos x \] Apply integration by parts again: \[ e^{2x} \sin x - 2(e^{2x}(-\cos x) - \int -\cos x \cdot 2e^{2x} \, dx) \] Simplifies to: \[ e^{2x} \sin x - 2(-e^{2x} \cos x + 2 \int e^{2x} \cos x \, dx) \] \[ e^{2x} \sin x - 2(-e^{2x} \cos x - 2\int e^{2x} \cos x \, dx) \] **Final Result:** \[ \int e^{2x} \cos x \, dx = e^{2x} \sin x - 2(-e^{2x} \cos x - 2 \int e^{2x} \cos x \, dx) \] This integral requires further simplification or solving through methods such as algebraic manipulation or finding a pattern/semi-circular queue.
### Integration by Parts Example The problem is to evaluate the integral: \[ \int e^{2x} \cos x \, dx \] **Step 1: Choose \( u \) and \( dv \)** Let: \[ u = e^{2x} \] \[ dv = \cos x \, dx \] Then, the derivatives are: \[ du = 2e^{2x} \, dx \] \[ v = \sin x \] **Step 2: Apply Integration by Parts** Integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Applying the formula: \[ e^{2x} \sin x - \int \sin x \cdot 2e^{2x} \, dx \] **Step 3: Repeat Integration by Parts** Now we handle the integral: \[ \int \sin x \cdot 2e^{2x} \, dx \] Choose: \[ u = e^{2x} \] \[ dv = \sin x \, dx \] Then: \[ du = 2e^{2x} \, dx \] \[ v = -\cos x \] Apply integration by parts again: \[ e^{2x} \sin x - 2(e^{2x}(-\cos x) - \int -\cos x \cdot 2e^{2x} \, dx) \] Simplifies to: \[ e^{2x} \sin x - 2(-e^{2x} \cos x + 2 \int e^{2x} \cos x \, dx) \] \[ e^{2x} \sin x - 2(-e^{2x} \cos x - 2\int e^{2x} \cos x \, dx) \] **Final Result:** \[ \int e^{2x} \cos x \, dx = e^{2x} \sin x - 2(-e^{2x} \cos x - 2 \int e^{2x} \cos x \, dx) \] This integral requires further simplification or solving through methods such as algebraic manipulation or finding a pattern/semi-circular queue.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
How do I finish this?
Expert Solution
Step 1
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning