### Series Analysis Consider the series given by: \[ \sum_{n=1}^{\infty} \frac{(-1)^n n^3}{7^n} \] We need to determine whether this series converges absolutely, converges conditionally, or diverges. Additionally, we seek to find the limit if it does converge. #### Steps to Analyze the Series 1. **Check for Absolute Convergence** - The series converges absolutely if the series of absolute values converges. - Consider the series: \[ \sum_{n=1}^{\infty} \left| \frac{(-1)^n n^3}{7^n} \right| = \sum_{n=1}^{\infty} \frac{n^3}{7^n} \] 2. **Comparison with a Known Convergent Series** - Analyze the terms of the series \(\frac{n^3}{7^n}\). - Use the Ratio Test: \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|\) \[ \lim_{n \to \infty} \left| \frac{\frac{(n+1)^3}{7^{n+1}}}{\frac{n^3}{7^n}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^3}{7 \cdot n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| \frac{(n+1)^3}{n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} \right| = \frac{1}{7} \] - Since \(\frac{1}{7} < 1\), by the Ratio Test, the series \(\sum_{n=1}^{\infty} \frac{n^3}{7^n}\) converges. - Therefore, the original series also converges absolutely by the Comparison Test. 3. **Conclusion**

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Series Analysis

Consider the series given by:

\[ \sum_{n=1}^{\infty} \frac{(-1)^n n^3}{7^n} \]

We need to determine whether this series converges absolutely, converges conditionally, or diverges. Additionally, we seek to find the limit if it does converge.

#### Steps to Analyze the Series

1. **Check for Absolute Convergence**
   - The series converges absolutely if the series of absolute values converges.
   - Consider the series: \[ \sum_{n=1}^{\infty} \left| \frac{(-1)^n n^3}{7^n} \right| = \sum_{n=1}^{\infty} \frac{n^3}{7^n} \]

2. **Comparison with a Known Convergent Series**
   - Analyze the terms of the series \(\frac{n^3}{7^n}\).
   - Use the Ratio Test: \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|\)
     \[
     \lim_{n \to \infty} \left| \frac{\frac{(n+1)^3}{7^{n+1}}}{\frac{n^3}{7^n}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^3}{7 \cdot n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| \frac{(n+1)^3}{n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} \right| = \frac{1}{7}
     \]

    - Since \(\frac{1}{7} < 1\), by the Ratio Test, the series \(\sum_{n=1}^{\infty} \frac{n^3}{7^n}\) converges.
    - Therefore, the original series also converges absolutely by the Comparison Test.

3. **Conclusion**
Transcribed Image Text:### Series Analysis Consider the series given by: \[ \sum_{n=1}^{\infty} \frac{(-1)^n n^3}{7^n} \] We need to determine whether this series converges absolutely, converges conditionally, or diverges. Additionally, we seek to find the limit if it does converge. #### Steps to Analyze the Series 1. **Check for Absolute Convergence** - The series converges absolutely if the series of absolute values converges. - Consider the series: \[ \sum_{n=1}^{\infty} \left| \frac{(-1)^n n^3}{7^n} \right| = \sum_{n=1}^{\infty} \frac{n^3}{7^n} \] 2. **Comparison with a Known Convergent Series** - Analyze the terms of the series \(\frac{n^3}{7^n}\). - Use the Ratio Test: \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|\) \[ \lim_{n \to \infty} \left| \frac{\frac{(n+1)^3}{7^{n+1}}}{\frac{n^3}{7^n}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^3}{7 \cdot n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| \frac{(n+1)^3}{n^3} \right| = \frac{1}{7} \lim_{n \to \infty} \left| 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} \right| = \frac{1}{7} \] - Since \(\frac{1}{7} < 1\), by the Ratio Test, the series \(\sum_{n=1}^{\infty} \frac{n^3}{7^n}\) converges. - Therefore, the original series also converges absolutely by the Comparison Test. 3. **Conclusion**
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning