**Problem 7c** Use the table below to estimate \(\int_{0}^{40} f(x) \, dx\). Use a left-hand sum with \(n = 4\). \[ \begin{array}{c|ccccc} x & 0 & 10 & 20 & 30 & 40 \\ \hline f(x) & 350 & 410 & 435 & 450 & 460 \\ \end{array} \] **Explanation:** To estimate the integral \(\int_{0}^{40} f(x) \, dx\) using a left-hand sum with \(n = 4\), divide the interval \([0, 40]\) into 4 equal subintervals. Each subinterval will have a width of \(\Delta x = 10\). Since it's a left-hand sum, use the left endpoints of each subinterval to find the function values: - For the interval \([0, 10]\), use \(f(0) = 350\). - For the interval \([10, 20]\), use \(f(10) = 410\). - For the interval \([20, 30]\), use \(f(20) = 435\). - For the interval \([30, 40]\), use \(f(30) = 450\). The left-hand sum is given by: \[ \sum_{i=0}^{3} f(x_i) \Delta x = (350 + 410 + 435 + 450) \times 10 \] Calculate the sum: \[ 350 + 410 + 435 + 450 = 1645 \] Multiply by the width \(\Delta x = 10\): \[ 1645 \times 10 = 16450 \] Therefore, the estimated value of the integral is 16,450.
**Problem 7c** Use the table below to estimate \(\int_{0}^{40} f(x) \, dx\). Use a left-hand sum with \(n = 4\). \[ \begin{array}{c|ccccc} x & 0 & 10 & 20 & 30 & 40 \\ \hline f(x) & 350 & 410 & 435 & 450 & 460 \\ \end{array} \] **Explanation:** To estimate the integral \(\int_{0}^{40} f(x) \, dx\) using a left-hand sum with \(n = 4\), divide the interval \([0, 40]\) into 4 equal subintervals. Each subinterval will have a width of \(\Delta x = 10\). Since it's a left-hand sum, use the left endpoints of each subinterval to find the function values: - For the interval \([0, 10]\), use \(f(0) = 350\). - For the interval \([10, 20]\), use \(f(10) = 410\). - For the interval \([20, 30]\), use \(f(20) = 435\). - For the interval \([30, 40]\), use \(f(30) = 450\). The left-hand sum is given by: \[ \sum_{i=0}^{3} f(x_i) \Delta x = (350 + 410 + 435 + 450) \times 10 \] Calculate the sum: \[ 350 + 410 + 435 + 450 = 1645 \] Multiply by the width \(\Delta x = 10\): \[ 1645 \times 10 = 16450 \] Therefore, the estimated value of the integral is 16,450.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem 7c**
Use the table below to estimate \(\int_{0}^{40} f(x) \, dx\). Use a left-hand sum with \(n = 4\).
\[
\begin{array}{c|ccccc}
x & 0 & 10 & 20 & 30 & 40 \\
\hline
f(x) & 350 & 410 & 435 & 450 & 460 \\
\end{array}
\]
**Explanation:**
To estimate the integral \(\int_{0}^{40} f(x) \, dx\) using a left-hand sum with \(n = 4\), divide the interval \([0, 40]\) into 4 equal subintervals. Each subinterval will have a width of \(\Delta x = 10\).
Since it's a left-hand sum, use the left endpoints of each subinterval to find the function values:
- For the interval \([0, 10]\), use \(f(0) = 350\).
- For the interval \([10, 20]\), use \(f(10) = 410\).
- For the interval \([20, 30]\), use \(f(20) = 435\).
- For the interval \([30, 40]\), use \(f(30) = 450\).
The left-hand sum is given by:
\[
\sum_{i=0}^{3} f(x_i) \Delta x = (350 + 410 + 435 + 450) \times 10
\]
Calculate the sum:
\[
350 + 410 + 435 + 450 = 1645
\]
Multiply by the width \(\Delta x = 10\):
\[
1645 \times 10 = 16450
\]
Therefore, the estimated value of the integral is 16,450.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F569dbbe0-fbf4-4ebf-ba85-ff97d3fc3240%2F0f5dc452-9588-40b8-a897-f2deeb517174%2Fhq90t68_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 7c**
Use the table below to estimate \(\int_{0}^{40} f(x) \, dx\). Use a left-hand sum with \(n = 4\).
\[
\begin{array}{c|ccccc}
x & 0 & 10 & 20 & 30 & 40 \\
\hline
f(x) & 350 & 410 & 435 & 450 & 460 \\
\end{array}
\]
**Explanation:**
To estimate the integral \(\int_{0}^{40} f(x) \, dx\) using a left-hand sum with \(n = 4\), divide the interval \([0, 40]\) into 4 equal subintervals. Each subinterval will have a width of \(\Delta x = 10\).
Since it's a left-hand sum, use the left endpoints of each subinterval to find the function values:
- For the interval \([0, 10]\), use \(f(0) = 350\).
- For the interval \([10, 20]\), use \(f(10) = 410\).
- For the interval \([20, 30]\), use \(f(20) = 435\).
- For the interval \([30, 40]\), use \(f(30) = 450\).
The left-hand sum is given by:
\[
\sum_{i=0}^{3} f(x_i) \Delta x = (350 + 410 + 435 + 450) \times 10
\]
Calculate the sum:
\[
350 + 410 + 435 + 450 = 1645
\]
Multiply by the width \(\Delta x = 10\):
\[
1645 \times 10 = 16450
\]
Therefore, the estimated value of the integral is 16,450.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning