Quantum mechanics and hydrogen atom
Consider an electron of mass m moves with the velocity v in a hydrogen atom. If an electron is at a distance r from the proton, then the potential energy function of the electron can be written as follows:
Isotopes of Hydrogen Atoms
To understand isotopes, it's easiest to learn the simplest system. Hydrogen, the most basic nucleus, has received a great deal of attention. Several of the results seen in more complex nuclei can be seen in hydrogen isotopes. An isotope is a nucleus of the same atomic number (Z) but a different atomic mass number (A). The number of neutrons present in the nucleus varies with respect to the isotope.
Mass of Hydrogen Atom
Hydrogen is one of the most fundamental elements on Earth which is colorless, odorless, and a flammable chemical substance. The representation of hydrogen in the periodic table is H. It is mostly found as a diatomic molecule as water H2O on earth. It is also known to be the lightest element and takes its place on Earth up to 0.14 %. There are three isotopes of hydrogen- protium, deuterium, and tritium. There is a huge abundance of Hydrogen molecules on the earth's surface. The hydrogen isotope tritium has its half-life equal to 12.32 years, through beta decay. In physics, the study of Hydrogen is fundamental.
AI answered the problem this way. Is this correct?
From the text you've provided, it seems like the problem at hand is to calculate the wavelength of a photon emitted when singly ionized helium (He+) transitions from the n=3n=3 to n=2n=2 state. Since He+ is a single-electron ion, it behaves like a hydrogen atom, so we can apply the same equations and principles.
The text mentions the Balmer series, which corresponds to transitions to n=2n=2. The Balmer-alpha line, often referred to as the Hydrogen-alpha or Hα line, corresponds to the transition from n=3n=3 to n=2n=2 in hydrogen, and its wavelength is 656 nm.
Since the helium ion (He+) behaves similarly to hydrogen in this context, the answer to the problem would also be 656 nm.
The emitted photon has a wavelength of 656 nm.
Step by step
Solved in 3 steps with 2 images