Calculate fz (0, 0, 1, 1), where f(x, y, z, w) = exz+y z² + w

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please show all work!

### Problem Statement

Calculate \( f_z(0, 0, 1, 1) \), where \( f(x, y, z, w) = \frac{e^{xz+y}}{z^2 + w} \).

---

**Explanation:**

The problem requires calculating the partial derivative of the function \( f \) with respect to the variable \( z \) at the point \( (0, 0, 1, 1) \). The function \( f(x, y, z, w) \) is given as:

\[ f(x, y, z, w) = \frac{e^{xz + y}}{z^2 + w} \]

To solve this, you will need to follow these steps:

1. **Differentiate \( f \) with respect to \( z \).**
2. **Substitute \( x = 0 \), \( y = 0 \), \( z = 1 \), and \( w = 1 \) into the derivative.**

#### Differentiation Step-by-Step:
1. **Differentiate the numerator and the denominator separately and then apply the quotient rule:**

\[ \frac{\partial}{\partial z}\left(\frac{e^{xz + y}}{z^2 + w}\right) = \frac{ (z^2+w) \frac{\partial e^{xz+y}}{\partial z} - e^{xz+y} \frac{\partial (z^2+w)}{\partial z} }{(z^2+w)^2} \]

2. **Compute \(\frac{\partial e^{xz+y}}{\partial z}\):**

\[ \frac{\partial e^{xz + y}}{\partial z} = xe^{xz + y} \]

3. **Compute \(\frac{\partial (z^2 + w)}{\partial z}\):**

\[ \frac{\partial (z^2 + w)}{\partial z} = 2z \]

4. **Substitute these into the quotient rule expression:**

\[ \frac{\partial}{\partial z}\left(\frac{e^{xz + y}}{z^2 + w}\right) = \frac{(z^2 + w) \cdot (xe^{xz + y}) - e^{xz + y} \cdot 2z}{(z^2 + w)^2} \]

5
Transcribed Image Text:### Problem Statement Calculate \( f_z(0, 0, 1, 1) \), where \( f(x, y, z, w) = \frac{e^{xz+y}}{z^2 + w} \). --- **Explanation:** The problem requires calculating the partial derivative of the function \( f \) with respect to the variable \( z \) at the point \( (0, 0, 1, 1) \). The function \( f(x, y, z, w) \) is given as: \[ f(x, y, z, w) = \frac{e^{xz + y}}{z^2 + w} \] To solve this, you will need to follow these steps: 1. **Differentiate \( f \) with respect to \( z \).** 2. **Substitute \( x = 0 \), \( y = 0 \), \( z = 1 \), and \( w = 1 \) into the derivative.** #### Differentiation Step-by-Step: 1. **Differentiate the numerator and the denominator separately and then apply the quotient rule:** \[ \frac{\partial}{\partial z}\left(\frac{e^{xz + y}}{z^2 + w}\right) = \frac{ (z^2+w) \frac{\partial e^{xz+y}}{\partial z} - e^{xz+y} \frac{\partial (z^2+w)}{\partial z} }{(z^2+w)^2} \] 2. **Compute \(\frac{\partial e^{xz+y}}{\partial z}\):** \[ \frac{\partial e^{xz + y}}{\partial z} = xe^{xz + y} \] 3. **Compute \(\frac{\partial (z^2 + w)}{\partial z}\):** \[ \frac{\partial (z^2 + w)}{\partial z} = 2z \] 4. **Substitute these into the quotient rule expression:** \[ \frac{\partial}{\partial z}\left(\frac{e^{xz + y}}{z^2 + w}\right) = \frac{(z^2 + w) \cdot (xe^{xz + y}) - e^{xz + y} \cdot 2z}{(z^2 + w)^2} \] 5
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,