Calculate AG°for each of the following reactions from the equilibrium constant at the temperature given. Reaction Temperature (°C) N₂ (g) + O₂ (g) → 2NO (g) 2000 H₂(g) + 1₂ (g) →→→ 2HI (g) 400 CO₂ (g) + H₂ (g) → CO (g) + H₂O (g) 980 CaCO3 (s) → CaO (s) + CO₂ (g) 900 Kp value 4.1 x 10-4 50.0 1.67 1.04
Calculate AG°for each of the following reactions from the equilibrium constant at the temperature given. Reaction Temperature (°C) N₂ (g) + O₂ (g) → 2NO (g) 2000 H₂(g) + 1₂ (g) →→→ 2HI (g) 400 CO₂ (g) + H₂ (g) → CO (g) + H₂O (g) 980 CaCO3 (s) → CaO (s) + CO₂ (g) 900 Kp value 4.1 x 10-4 50.0 1.67 1.04
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
100%
![### Calculating \( \Delta G^\circ \) from Equilibrium Constants
To determine the standard Gibbs free energy change (\( \Delta G^\circ \)) for a reaction, we can use the equilibrium constant (\( K_p \)) at a given temperature. The table below provides the necessary data to perform these calculations for several reactions:
| Reaction | Temperature (°C) | \( K_p \) value |
|----------------------------------------------|------------------|------------------|
| \( \text{N}_2 (g) + \text{O}_2 (g) \rightarrow 2\text{NO} (g) \) | 2000 | \( 4.1 \times 10^{-4} \) |
| \( \text{H}_2 (g) + \text{I}_2 (g) \rightarrow 2\text{HI} (g) \) | 400 | 50.0 |
| \( \text{CO}_2 (g) + \text{H}_2 (g) \rightarrow \text{CO} (g) + \text{H}_2\text{O} (g) \) | 980 | 1.67 |
| \( \text{CaCO}_3 (s) \rightarrow \text{CaO} (s) + \text{CO}_2 (g) \) | 900 | 1.04 |
### Explanation of Data
- **Reaction**: The balanced chemical equation for each reaction.
- **Temperature (°C)**: The temperature at which the equilibrium constant \( K_p \) is measured.
- **\( K_p \) value**: The equilibrium constant for the reaction at the given temperature.
### Calculation of \( \Delta G^\circ \)
The relationship between \( \Delta G^\circ \) and \( K_p \) is given by the equation:
\[ \Delta G^\circ = -RT \ln (K_p) \]
where:
- \( R \) is the universal gas constant (8.314 J/(mol·K)).
- \( T \) is the temperature in Kelvin (K).
#### Steps to Calculate \( \Delta G^\circ \):
1. **Convert Temperature to Kelvin**:
\[ T(K) = T(°C) + 273.15 \]
2. **Calculate \( \Delta](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff90913a8-510d-485a-8226-8a0b61f2c858%2Fe9bbf5de-5395-4819-b224-a986df41687b%2Fabb1c8_processed.png&w=3840&q=75)
Transcribed Image Text:### Calculating \( \Delta G^\circ \) from Equilibrium Constants
To determine the standard Gibbs free energy change (\( \Delta G^\circ \)) for a reaction, we can use the equilibrium constant (\( K_p \)) at a given temperature. The table below provides the necessary data to perform these calculations for several reactions:
| Reaction | Temperature (°C) | \( K_p \) value |
|----------------------------------------------|------------------|------------------|
| \( \text{N}_2 (g) + \text{O}_2 (g) \rightarrow 2\text{NO} (g) \) | 2000 | \( 4.1 \times 10^{-4} \) |
| \( \text{H}_2 (g) + \text{I}_2 (g) \rightarrow 2\text{HI} (g) \) | 400 | 50.0 |
| \( \text{CO}_2 (g) + \text{H}_2 (g) \rightarrow \text{CO} (g) + \text{H}_2\text{O} (g) \) | 980 | 1.67 |
| \( \text{CaCO}_3 (s) \rightarrow \text{CaO} (s) + \text{CO}_2 (g) \) | 900 | 1.04 |
### Explanation of Data
- **Reaction**: The balanced chemical equation for each reaction.
- **Temperature (°C)**: The temperature at which the equilibrium constant \( K_p \) is measured.
- **\( K_p \) value**: The equilibrium constant for the reaction at the given temperature.
### Calculation of \( \Delta G^\circ \)
The relationship between \( \Delta G^\circ \) and \( K_p \) is given by the equation:
\[ \Delta G^\circ = -RT \ln (K_p) \]
where:
- \( R \) is the universal gas constant (8.314 J/(mol·K)).
- \( T \) is the temperature in Kelvin (K).
#### Steps to Calculate \( \Delta G^\circ \):
1. **Convert Temperature to Kelvin**:
\[ T(K) = T(°C) + 273.15 \]
2. **Calculate \( \Delta
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY