College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
calculate this equation
![The image appears to show a handwritten mathematical integral on graph paper. Here is the transcription of the content:
---
### Calculate
\[ \int_{0}^{2} 14(x+1)^2 \, dx \]
---
#### Explanation:
The given integral is a definite integral from 0 to 2 of the function \( 14(x+1)^2 \) with respect to \( x \). To solve this integral:
1. **Expand the Integrand**: First, expand \( (x+1)^2 \).
\[ (x+1)^2 = x^2 + 2x + 1 \]
2. **Distribute the Constant**: Multiply the expansion by 14.
\[ 14(x^2 + 2x + 1) = 14x^2 + 28x + 14 \]
3. **Integrate the Expanded Function**:
\[ \int_{0}^{2} (14x^2 + 28x + 14) \, dx \]
4. **Apply the Power Rule of Integration**: Integrate each term separately.
\[ \int_{0}^{2} 14x^2 \, dx = 14 \left[\frac{x^3}{3}\right]_{0}^{2} \]
\[ \int_{0}^{2} 28x \, dx = 28 \left[\frac{x^2}{2}\right]_{0}^{2} \]
\[ \int_{0}^{2} 14 \, dx = 14 [x]_{0}^{2} \]
5. **Evaluate the Integrals**:
\[ 14 \left[\frac{x^3}{3}\right]_{0}^{2} = 14 \left(\frac{2^3}{3} - \frac{0^3}{3}\right) = 14 \left(\frac{8}{3} - 0\right) = \frac{112}{3} \]
\[ 28 \left[\frac{x^2}{2}\right]_{0}^{2} = 28 \left(\frac{2^2}{2} - \frac{0^2}{2}\right) = 28 \left(2 - 0\right) = 56 \]
\[ 14 [x]_{0}^{2} = 14 (2 - 0) = 28 \]
6.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5886f279-1ae3-47c9-a907-c1e5911c0685%2F685d5da7-a05f-4a97-b22e-72ebb0a39a89%2F07rxvr_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image appears to show a handwritten mathematical integral on graph paper. Here is the transcription of the content:
---
### Calculate
\[ \int_{0}^{2} 14(x+1)^2 \, dx \]
---
#### Explanation:
The given integral is a definite integral from 0 to 2 of the function \( 14(x+1)^2 \) with respect to \( x \). To solve this integral:
1. **Expand the Integrand**: First, expand \( (x+1)^2 \).
\[ (x+1)^2 = x^2 + 2x + 1 \]
2. **Distribute the Constant**: Multiply the expansion by 14.
\[ 14(x^2 + 2x + 1) = 14x^2 + 28x + 14 \]
3. **Integrate the Expanded Function**:
\[ \int_{0}^{2} (14x^2 + 28x + 14) \, dx \]
4. **Apply the Power Rule of Integration**: Integrate each term separately.
\[ \int_{0}^{2} 14x^2 \, dx = 14 \left[\frac{x^3}{3}\right]_{0}^{2} \]
\[ \int_{0}^{2} 28x \, dx = 28 \left[\frac{x^2}{2}\right]_{0}^{2} \]
\[ \int_{0}^{2} 14 \, dx = 14 [x]_{0}^{2} \]
5. **Evaluate the Integrals**:
\[ 14 \left[\frac{x^3}{3}\right]_{0}^{2} = 14 \left(\frac{2^3}{3} - \frac{0^3}{3}\right) = 14 \left(\frac{8}{3} - 0\right) = \frac{112}{3} \]
\[ 28 \left[\frac{x^2}{2}\right]_{0}^{2} = 28 \left(\frac{2^2}{2} - \frac{0^2}{2}\right) = 28 \left(2 - 0\right) = 56 \]
\[ 14 [x]_{0}^{2} = 14 (2 - 0) = 28 \]
6.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON