(c) (X1, Y1, Z1) + (x2, Y2, Z2) = (xX1 + X2 + 7, y1 + y2 + 7, z1 + Z2 + 7) с(x, у, 2) %3D (сх, су, с2) !! O The set is a vector space. O The set is not a vector space because the additive identity property is not satisfied. O The set is not a vector space because the additive inverse property is not satisfied. O The set is not a vector space because it is not closed under scalar multiplication. O The set is not a vector space because the distributive property is not satisfied.

Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter4: Vector Spaces
Section4.2: Vector Spaces
Problem 37E: Let V be the set of all positive real numbers. Determine whether V is a vector space with the...
icon
Related questions
Question
Rather than use the standard definitions of addition and scalar multiplication in R3, suppose these two operations are defined as follows. With these new definitions, is R3, a vector space? Justify your answers.
(c)
(X1, Y1, Z1) + (x2, Y2, Z2) = (x1 + X2 + 7, y1 + y2 + 7, Z1 + Z2 + 7)
c(x, y, z) = (cx, cy, cz)
O The set is a vector space.
O The set is not a vector space because the additive identity property is not satisfied.
O The set is not a vector space because the additive inverse property is not satisfied.
The set is not a vector space because it is not closed under scalar multiplication.
O The set is not a vector space because the distributive property is not satisfied.
O O
Transcribed Image Text:(c) (X1, Y1, Z1) + (x2, Y2, Z2) = (x1 + X2 + 7, y1 + y2 + 7, Z1 + Z2 + 7) c(x, y, z) = (cx, cy, cz) O The set is a vector space. O The set is not a vector space because the additive identity property is not satisfied. O The set is not a vector space because the additive inverse property is not satisfied. The set is not a vector space because it is not closed under scalar multiplication. O The set is not a vector space because the distributive property is not satisfied. O O
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage