c) One of the bestselling items at the stall are gummy worms, so you decide to perfect the recipe. The ideal gummy will stretch a little as you bite into it, but not too much. The mold you use produces worms with a length of 0.1m and a diameter of 0.03m. You narrow it down to two recipes. In the graph below are the two possible options you produce when you hang weights from the bottom of your two most likely gummy worms and measure the extension. Force (N) 0.6 Extension (cm) Calculate the Young Modulus of the gummy worms by converting one of the options into a stress/ strain graph (to be shown with your answers) and the other by using calculations. Choose which gummy worm you think would be better and explain why.
c) One of the bestselling items at the stall are gummy worms, so you decide to perfect the recipe. The ideal gummy will stretch a little as you bite into it, but not too much. The mold you use produces worms with a length of 0.1m and a diameter of 0.03m. You narrow it down to two recipes. In the graph below are the two possible options you produce when you hang weights from the bottom of your two most likely gummy worms and measure the extension. Force (N) 0.6 Extension (cm) Calculate the Young Modulus of the gummy worms by converting one of the options into a stress/ strain graph (to be shown with your answers) and the other by using calculations. Choose which gummy worm you think would be better and explain why.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Please solve the question attached in the pic asap

Transcribed Image Text:c) One of the bestselling items at the stall are gummy worms, so you decide to
perfect the recipe. The ideal gummy will stretch a little as you bite into it, but
not too much. The mold you use produces worms with a length of 0.1m and a
diameter of 0.03m.
You narrow it down to two recipes. In the graph below are the two possible
options you produce when you hang weights from the bottom of your two
most likely gummy worms and measure the extension.
Force (N)
0.2
0.4
0.6
0.8
Extension (cm)
Calculate the Young Modulus of the gummy worms by converting one of the options
into a stress/ strain graph (to be shown with your answers) and the other by using
calculations. Choose which gummy worm you think would be better and explain why.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY