برهن على صحة التكاملات التالية : fx²J, (x) dx = x²3, (X) + x1(x)-[Jux) dx J, [x*J₁ (x) dx = x* J, (x) - 2x³ J, (x) + c [J₁ (x) dx = -J₁ (x) - 21₂(x) + c J₂ ( x ) (40) dx 1₂(X) - J,(x) + 3x (x) dx - 15 J₁ 8 √(x) dx = ( 2 -) J₁ (X) + = + J₁ (X) +0 - 16 X [11√T12-2√/TMINTI x) dx = 2√√x J₁ ( x ) + c [ANTI-TINTI-ST x ) dx = 6 X ) 3 3 X² Jo (√X) + 0 - -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
برهن على صحة التكاملات التالية :
fx²J, (x) dx = x² J₁ (x) + x1(x)-[1.***
[x*J₁ (x) dx = x* J₂ (x) - 2x³ 1₁ (x) +
[₁₁(x) dx = -
- Jo (x) - 2J₂ (x) + c
J₂ (X)
dx H
J₂ (X) - 1₁(x) + = [Joix) dx - 15
J,
1
3x
3
3 J₂(x)
8
[¹² x=(-2) 1₁ (x) + J. (X) +c-16
+ +C
dx
Solve
[11√10-2√TINTI.
x) dx = 2√√√x J₁ (
x ) + C
-17
SAINTTINTINTI.
[₁₁₁ √ ) dx = 6 √√ 7 1₁ ₁ √ T
x
X
X
3 x² Jo
( √ ) + 0
Transcribed Image Text:برهن على صحة التكاملات التالية : fx²J, (x) dx = x² J₁ (x) + x1(x)-[1.*** [x*J₁ (x) dx = x* J₂ (x) - 2x³ 1₁ (x) + [₁₁(x) dx = - - Jo (x) - 2J₂ (x) + c J₂ (X) dx H J₂ (X) - 1₁(x) + = [Joix) dx - 15 J, 1 3x 3 3 J₂(x) 8 [¹² x=(-2) 1₁ (x) + J. (X) +c-16 + +C dx Solve [11√10-2√TINTI. x) dx = 2√√√x J₁ ( x ) + C -17 SAINTTINTINTI. [₁₁₁ √ ) dx = 6 √√ 7 1₁ ₁ √ T x X X 3 x² Jo ( √ ) + 0
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,