Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. Suppose the merry-go-round starts from rest and begins rotating faster and faster (perhaps with some constant angular acceleration α). Klyde’s linear/tangential acceleration is: (a) Same as Bonnie's (b) Twice Bonnie's (c) Half of Bonnie's (d) One Quarter of Bonnie's
Angular speed, acceleration and displacement
Angular acceleration is defined as the rate of change in angular velocity with respect to time. It has both magnitude and direction. So, it is a vector quantity.
Angular Position
Before diving into angular position, one should understand the basics of position and its importance along with usage in day-to-day life. When one talks of position, it’s always relative with respect to some other object. For example, position of earth with respect to sun, position of school with respect to house, etc. Angular position is the rotational analogue of linear position.
Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. Suppose the merry-go-round starts from rest and begins rotating faster and faster (perhaps with some constant
(a) Same as Bonnie's
(b) Twice Bonnie's
(c) Half of Bonnie's
(d) One Quarter of Bonnie's
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images