Binomial Probability Sums r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 10 0.9000 0.8000 0.7500 0.7000 0.000 0.5000 10000 0.4000 0.3000 0.2000 0.1000 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 L0000 1.0000 20 0.8100 0.6400 0.5625 0.4900 0.3000 0.2500 1 0.9900 0.9600 0.9375 0.9100 0.8400 0.7500 1.0000 0.1600 0.0900 0.0400 0.0100 2 1.0000 1.0000 0.6400 0.5100 0.3600 0.1900 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 30 0.7290 0.5120 0.4219 0.3130 0.2160 0.1250 0.8438 0.7840 0.GIS0 0.5000 1 0.9720 2 0.9990 0.9020 0.9844 0.9730 0.9360 0.8750 3 1.0000 0.0640 0.0270 0.0080 0.0010 0.3520 0.210 0.100 0.02s0 0.7840 0.6570 0.4880 0.2710 1.0000 1.0000 1.0000 1.0000 1.0000 0.8900 1.0000 1.0000 1.0000 1.0000 40 0.6561 0.4096 0.3164 0.201 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001 1 0.9177 0.8192 0.7383 0.6517 0.4752 0.3125 2 0.9963 0.9728 0.9492 0.9163 0.8208 0.6875 3 0.9999 0.9984 0.9961 4 1.0000 1.0000 1.0000 5 0 0.5905 0.3277 0.1792 0.0837 0.0272 0.0037 0.5248 0.3483 0.1808 0.0523 0.9919 0.9744 0.9375 0.S704 0.7599 0.5904 0.3439 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2373 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000 2 0.9014 0.9421 3 0.9995 0.9933 0.9844 0.9692 0.9130 0.8125 4 1.0000 0.9997 1.0000 1.0000 1 0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005 0.3174 0.1631 0.0679 0.086 0.6630 0.4718 0.2627 0.0815 0.9222 0.8319 0.6723 0.4095 1.0000 0.8965 0.8369 0.6826 0.5000 0.9990 0.9976 0.9898 0.9688 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 6 0 0.5314 0.2621 0.1780 0.1176 0.0067 0.0156 0.0041 0.0007 0.0001 0.0000
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
![Binomial Probability Sums Ean, p)
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1 0
0.9000 0.8000 0.7500 0.7000 0.000 0.5000 0.4000 0.300 0.2000 0.1000
1.0000
1
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000
20 0.8100 0.6400 0.5625 0.4900 0.3000 0.2500 0.1600 0.0900 0.0400 0.0100
1 0.9900 0.9600 0.9375 0.9100 0.800 0.7500 0.6400 0.5100 0.3600 0.1900
1.0000
2 1.0000
1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
30 0.7290 0.5120 0.4219 0.3130 0.2160 0.1250 0.0610 0.0270 0.008o 0.0010
1 0.9720 0.8900 0.8438 0.7840 0.6180 0.5000 0.3520 0.210 0.1010 0.02s0
2 0.9990 0.9020 0.9844 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710
3 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
1.0000
40 0.6561 0.4096 0.3164 0.2001 0.1296 00625 0.0256 0.0081 0.0016 0.0001
1 0.9177 0.8192 0.7383 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0007
2 0.9963 0.9728 0.9492 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523
3 0.9999 0.9984 0.9961 0.9919 0.9744 09375 0S704 0.7599 0.5904 0.3139
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 0.5005 0.3277 0.2373 0.1681 0.0778 0.O313 00102 0.0024 0.0003 0.000
1 0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005
2 0.9014 0.9421 0.8965 0.8369 0.6826 0.5000 0.3174 0.1631 0.0679 0.0086
3 0.9995 0.9933 0.9844 0.9602 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815
4 1.0000 0.9997 0.9990 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095
5 1.0000 1.00оо 1.0000 1.0ю 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 0 0.5314 0.2621 0.1780 0.1176 0.0167 O.0156 0.0041 0.0007 0.0001
1 0.8857 0.6554 0.5339 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001
2 0.9842 0.9011 0.8306 0.7443 0.5443 0.3438 0.1792 0.0706 0.0170 0.0013
3 0.9087 0.9830 0.9624 0.9295 0.8208 0.6563 0.4557 0.2557 0.0089 0.0150
0.0000
4 0.9999 0.9984 0.9954 0.9891
0.9590
0.8906
0.7667 0.5798 0.3446 0.1143
5
1.0000 0.9999 0.9998 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686
6 1.0000 1.0000 1.0000
70 0.4783 0.2097 0.1335 0.0824 0.0280 0.0078
1 0.8503 0.5767 0.449 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000
2 0.9743 0.8S20 0.7564 0.G171 0.4199 0.2266 0.0963 0.02ss 0.0017 0.0002
3 0.9973 0.9667 0.9294 0.8740 0.7102 0.5000 0.2898 0.1290 0.033 0.0027
4 0.9998 0.9963 0.9871 0.9712 0.9037 0.7734
5 1.0000 0.9996 0.9987 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233
6
1.0000
1.0000
1.0000 1.0000 1.0000 1.0000
1.0000
0.0016 0.0002 0.0000
0.3529
0.1480 0.02ST
0.1497
1.0000 0.9900 0.9908 0.9084 0.9922 0.9720 0.9176 0.7903 0.5217
1.0000
1.0000 1.0000 1.0000 1.0000
1.0000
1.0000
1.0000
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F22590f24-92e0-4703-8440-5c9c255c1d1c%2F9e009fb3-b7e8-46b7-bd77-148e46fe3883%2Fq942wu9_processed.png&w=3840&q=75)
![The percentage of wins for a basketball team going into the playoffs was 88.5%. Round the 88.5 to 90 in order to use the accompanying table.
(a) What is the probability that the team wins the first 4 games of the initial best-of-7 series?
(b) What is the probability that the team wins the initial best-of-7 series?
(c) What very important assumption is made in answering parts (a) and (b)?
Click here to view page 1 of the table of binomial probability sums.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F22590f24-92e0-4703-8440-5c9c255c1d1c%2F9e009fb3-b7e8-46b7-bd77-148e46fe3883%2Fympxqnp_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)