It is estimated that 6000 of the 10,000 voting residents of a town are against a new sales tax. If 12 eligible voters are selected at random and asked their opinion, what is the probability that at most 5 favor the new tax? Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. The probability that at most 5 favor the new tax is (Round to four decimal places as needed.) Binomial Probability Sums Źb(x;n,p) P " " 0.10 12 0 0.25 0.2824 0.0687 0.0317 0.20 1 0.6590 0.2749 0.1584 0.30 0.0138 0.0850 2 0.8891 0.5583 0.3907 0.2528 3 4 5 6 8 9 10 11 12 0.40 0.50 0.0022 0.0002 0.0196 0.0032 0.0003 0.0000 0.0834 0.0193 0.0028 0.0002 0.0000 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 1.0000 1.0000 1.0000 1.0000 1.0000 0.60 0.0000 0.70 0.80 0.90 ☐ = Binomial Probability Sums b(z;n,p) 7-0 P 12 " 15 0 1 5 6 8 13 134 0 2 3 5 8 9 10 11 12 13 14 0 0.2288 0.0440 2 3 1 0.5846 0.1979 0.4481 0.8416 0.9559 0.6982 0.0178 0.0068 0.1010 0.0475 0.2811 0.1608 0.5213 0.3552 0.2542 0.0550 0.0238 0.0097 0.0013 1 0.6213 0.2336 0.1267 0.0637 0.0126 0.8661 0.5017 0.3326 0.2025 0.0579 0.9658 0.7473 0.5843 0.4206 0.1686 4 0.9935 0.9009 0.7940 0.6543 0.3530 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 1.0000 0.9999 0.9987 0.9903 1.0000 1.0000 1.0000 0.0008 0.0001 0.0000 0.0009 0.0081 0.0001 0.0065 0.0006 0.0398 0.1243 0.0287 0.0039 0.0002 0.0001 0.0000 0.0017 0.0001 0.0000 9 0.0112 0.0013 0.0001 10 11 0.0461 0.0078 0.0007 0.0000 0.1334 0.0321 0.0040 0.0002 12 0.10 0.20 0.25 0.30 0.40 0.50 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000 3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001 4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 0.60 0.70 0.80 0.90 0.0000 0.0003 13 14 15 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 16 0 0.1853 1 0.7664 0.3787 1.0000 0.9450 0.7458 1.0000 4 5 7 0.0000 8 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 9 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 10 8 9 10 11 12 13 14 6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.9998 1.0000 0.9961 0.9713 0.8757 0.6448 0.3018 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.9999 0.9991 0.9919 0.9525 0.8021 1.0000 0.9999 0.9992 0.9932 0.9560 1.0000 1.0000 1.0000 1.0000 11 110% 12 13 14 0.0441 0.1584 0.4154 0.7712 1.0000 15 16 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 3 0.9316 0.4050 0.2459 0.5981 0.0651 0.0106 0.0009 0.0000 0.9830 0.6302 0.4499 0.1666 0.0384 0.7982 0.0049 0.0003 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.0015 0.7161 0.4018 0.1423 0.0257 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0,9006 0.6482 0.2108 1.0000 0.9967 0.9739 0.8593 0.4853 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P n 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%

Please solve the attached question

It is estimated that 6000 of the 10,000 voting residents of a town are against a new sales tax. If 12 eligible voters are
selected at random and asked their opinion, what is the probability that at most 5 favor the new tax?
Click here to view page 1 of the table of binomial probability sums.
Click here to view page 2 of the table of binomial probability sums.
The probability that at most 5 favor the new tax is
(Round to four decimal places as needed.)
Transcribed Image Text:It is estimated that 6000 of the 10,000 voting residents of a town are against a new sales tax. If 12 eligible voters are selected at random and asked their opinion, what is the probability that at most 5 favor the new tax? Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. The probability that at most 5 favor the new tax is (Round to four decimal places as needed.)
Binomial Probability Sums Źb(x;n,p)
P
"
"
0.10
12 0
0.25
0.2824 0.0687 0.0317
0.20
1
0.6590 0.2749 0.1584
0.30
0.0138
0.0850
2
0.8891 0.5583 0.3907 0.2528
3
4
5
6
8
9
10
11
12
0.40 0.50
0.0022 0.0002
0.0196 0.0032 0.0003 0.0000
0.0834 0.0193 0.0028 0.0002 0.0000
0.9744 0.7946 0.6488 0.4925
0.2253 0.0730 0.0153 0.0017 0.0001
0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000
0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001
0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005
7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043
0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256
1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109
1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410
1.0000 0.9998 0.9978 0.9862 0.9313 0.7176
1.0000 1.0000 1.0000 1.0000 1.0000
0.60
0.0000
0.70
0.80
0.90
☐ =
Binomial Probability Sums b(z;n,p)
7-0
P
12
"
15 0
1
5
6
8
13
134
0
2
3
5
8
9
10
11
12
13
14 0
0.2288
0.0440
2
3
1 0.5846 0.1979
0.4481
0.8416
0.9559 0.6982
0.0178 0.0068
0.1010 0.0475
0.2811 0.1608
0.5213 0.3552
0.2542 0.0550 0.0238 0.0097 0.0013
1 0.6213 0.2336 0.1267 0.0637 0.0126
0.8661 0.5017 0.3326 0.2025 0.0579
0.9658 0.7473 0.5843 0.4206 0.1686
4 0.9935 0.9009 0.7940 0.6543 0.3530
0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000
6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288
0.0624 0.0070 0.0001
7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009
0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065
1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794
0.2527 0.0342
1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339
1.0000 0.9999 0.9983 0.9874 0.9363
1.0000
0.9999 0.9987 0.9903
1.0000
1.0000 1.0000
0.0008 0.0001 0.0000
0.0009
0.0081
0.0001
0.0065 0.0006
0.0398
0.1243 0.0287 0.0039 0.0002
0.0001 0.0000
0.0017 0.0001 0.0000
9
0.0112 0.0013 0.0001
10
11
0.0461 0.0078 0.0007 0.0000
0.1334 0.0321 0.0040 0.0002
12
0.10 0.20 0.25 0.30 0.40 0.50
0.2059 0.0352 0.0134 0.0047 0.0005 0.0000
0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000
2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000
3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001
4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000
0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001
0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008
7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042
0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181
0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022
1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127
1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556
1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841
0.60
0.70
0.80
0.90
0.0000
0.0003
13
14
15
1.0000 0.9995 0.9948 0.9647 0.8329 0.4510
1.0000 0.9995 0.9953 0.9648 0.7941
1.0000 1.0000 1.0000 1.0000
16 0 0.1853
1
0.7664 0.3787
1.0000
0.9450 0.7458
1.0000
4
5
7
0.0000
8
4
0.9908 0.8702 0.7415 0.5842
0.2793 0.0898 0.0175 0.0017 0.0000
9
5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004
10
8
9
10
11
12
13
14
6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000
7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002
0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015
1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092
0.9998
1.0000
0.9961 0.9713 0.8757 0.6448 0.3018
1.0000 0.9994 0.9935 0.9602 0.8392 0.5519
0.9999 0.9991 0.9919 0.9525 0.8021
1.0000 0.9999 0.9992 0.9932 0.9560
1.0000 1.0000 1.0000 1.0000
11
110%
12
13
14
0.0441
0.1584
0.4154
0.7712
1.0000
15
16
0.0281 0.0100 0.0033 0.0003 0.0000
0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000
2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001
3 0.9316
0.4050 0.2459
0.5981
0.0651 0.0106 0.0009 0.0000
0.9830
0.6302 0.4499 0.1666 0.0384
0.7982
0.0049 0.0003
0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000
6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002
0.9999 0.9930 0.9729 0.9256
0.0015
0.7161 0.4018 0.1423 0.0257
0.0000
1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001
0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005
1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033
1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170
1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684
0.9999 0.9979 0.9817 0,9006 0.6482 0.2108
1.0000
0.9967 0.9739 0.8593 0.4853
0.9997 0.9967 0.9719 0.8147
1.0000 1.0000 1.0000 1.0000
0.9997
1.0000
"
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
P
n
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
P
Transcribed Image Text:Binomial Probability Sums Źb(x;n,p) P " " 0.10 12 0 0.25 0.2824 0.0687 0.0317 0.20 1 0.6590 0.2749 0.1584 0.30 0.0138 0.0850 2 0.8891 0.5583 0.3907 0.2528 3 4 5 6 8 9 10 11 12 0.40 0.50 0.0022 0.0002 0.0196 0.0032 0.0003 0.0000 0.0834 0.0193 0.0028 0.0002 0.0000 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.9995 0.9806 0.9456 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 1.0000 1.0000 1.0000 1.0000 1.0000 0.60 0.0000 0.70 0.80 0.90 ☐ = Binomial Probability Sums b(z;n,p) 7-0 P 12 " 15 0 1 5 6 8 13 134 0 2 3 5 8 9 10 11 12 13 14 0 0.2288 0.0440 2 3 1 0.5846 0.1979 0.4481 0.8416 0.9559 0.6982 0.0178 0.0068 0.1010 0.0475 0.2811 0.1608 0.5213 0.3552 0.2542 0.0550 0.0238 0.0097 0.0013 1 0.6213 0.2336 0.1267 0.0637 0.0126 0.8661 0.5017 0.3326 0.2025 0.0579 0.9658 0.7473 0.5843 0.4206 0.1686 4 0.9935 0.9009 0.7940 0.6543 0.3530 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 7 1.0000 0.9988 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 1.0000 0.9999 0.9983 0.9874 0.9363 1.0000 0.9999 0.9987 0.9903 1.0000 1.0000 1.0000 0.0008 0.0001 0.0000 0.0009 0.0081 0.0001 0.0065 0.0006 0.0398 0.1243 0.0287 0.0039 0.0002 0.0001 0.0000 0.0017 0.0001 0.0000 9 0.0112 0.0013 0.0001 10 11 0.0461 0.0078 0.0007 0.0000 0.1334 0.0321 0.0040 0.0002 12 0.10 0.20 0.25 0.30 0.40 0.50 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000 2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000 3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001 4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841 0.60 0.70 0.80 0.90 0.0000 0.0003 13 14 15 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 1.0000 0.9995 0.9953 0.9648 0.7941 1.0000 1.0000 1.0000 1.0000 16 0 0.1853 1 0.7664 0.3787 1.0000 0.9450 0.7458 1.0000 4 5 7 0.0000 8 4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 9 5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 10 8 9 10 11 12 13 14 6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.9998 1.0000 0.9961 0.9713 0.8757 0.6448 0.3018 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.9999 0.9991 0.9919 0.9525 0.8021 1.0000 0.9999 0.9992 0.9932 0.9560 1.0000 1.0000 1.0000 1.0000 11 110% 12 13 14 0.0441 0.1584 0.4154 0.7712 1.0000 15 16 0.0281 0.0100 0.0033 0.0003 0.0000 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000 2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001 3 0.9316 0.4050 0.2459 0.5981 0.0651 0.0106 0.0009 0.0000 0.9830 0.6302 0.4499 0.1666 0.0384 0.7982 0.0049 0.0003 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000 6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002 0.9999 0.9930 0.9729 0.9256 0.0015 0.7161 0.4018 0.1423 0.0257 0.0000 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684 0.9999 0.9979 0.9817 0,9006 0.6482 0.2108 1.0000 0.9967 0.9739 0.8593 0.4853 0.9997 0.9967 0.9719 0.8147 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P n 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 P
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer