Binomial Distribution he Wall Street Journal reported some interesting statistics on the job market. One statistic is that 40% of all workers say they would change jobs for "slightly higher pay." In addition, 88% of companies say that there is a shortage of qualified job candidates. Suppose 16 workers are randomly selected and asked if they would change jobs for "slightly higher pay." Appendix A Table *(Round your answer to 3 decimal places when calculating using Table A.2.) **(Round your answer to 4 decimal places.) ***(Round your answer to 2 decimal place.) a. What is the probability that 9 or more say yes? type your answer... b. What is the probability that 3, 4, 5, or 6 say yes? type your answer... c. If 13 companies are contacted, what is the probability that exactly 10 say there is a shortage of qualified job candidates? type your answer...

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
Binomial Distribution
he Wall Street Journal reported some interesting statistics on the job market. One statistic is that 40% of all workers say they would change jobs
for "slightly higher pay." In addition, 88% of companies say that there is a shortage of qualified job candidates. Suppose 16 workers are randomly
selected and asked if they would change jobs for "slightly higher pay."
Appendix A Table
*(Round your answer to 3 decimal places when calculating using Table A.2.)
**(Round your answer to 4 decimal places.)
***(Round your answer to 2 decimal place.)
a. What is the probability that 9 or more say yes?
b. What is the probability that 3, 4, 5, or 6 say yes?
type your answer...
c. If 13 companies are contacted, what is the probability that exactly 10 say there is a shortage of qualified job candidates?
type your answer...
type your answer...
d. If 13 companies are contacted, what is the probability that all of the companies say there is a shortage of qualified job candidates?
type your answer...
e. If 13 companies are contacted, what is the expected number of companies that would say there is a shortage of qualified job candidates?
type your answer...
***
Transcribed Image Text:Binomial Distribution he Wall Street Journal reported some interesting statistics on the job market. One statistic is that 40% of all workers say they would change jobs for "slightly higher pay." In addition, 88% of companies say that there is a shortage of qualified job candidates. Suppose 16 workers are randomly selected and asked if they would change jobs for "slightly higher pay." Appendix A Table *(Round your answer to 3 decimal places when calculating using Table A.2.) **(Round your answer to 4 decimal places.) ***(Round your answer to 2 decimal place.) a. What is the probability that 9 or more say yes? b. What is the probability that 3, 4, 5, or 6 say yes? type your answer... c. If 13 companies are contacted, what is the probability that exactly 10 say there is a shortage of qualified job candidates? type your answer... type your answer... d. If 13 companies are contacted, what is the probability that all of the companies say there is a shortage of qualified job candidates? type your answer... e. If 13 companies are contacted, what is the expected number of companies that would say there is a shortage of qualified job candidates? type your answer... ***
9:35
BINOMIAL AND POIS...
=16
.1
-7
.8
0 206 035 005 .000 .000 .000 .000 .000 .000
1 343 132 031 .005.000 .000 .000 .000 .000
2 267 231 092 022 003 000 000 000 000
3 129 250 170 063 014 002 .000 .000 .000
4 .043 188 219 127 042 007 .001 .000 .000
5 .010 103206 186 092 .024.003 .000 .000
6 002 043 147 207 153 061 012 001 000
7 000 014 081 177 196 118 035 003 000
8 000 003 035 118 196 177 .081 .014 000
Probability
3 4 5 .6 -7 .8 .9
003 .000 .000 .000 .000 .000 .000
023 .003 .000 .000 .000 .000 .000
2 275 211 073 015 002 .000 .000 .000 .000
3 142 246 146 047 009 .001 .000 .000 .000
4 .051 200 204 101 .028 004 .000 .000 .000
5.014 120 210 162 067 014 .001.000.000
6.003 .055 165 198 122 039 .006.000.000
7 000 020 101 189 175 084 019 .001.000
8 000 006 .049 142 196 142 049 006 000
9 000 .001 019 .084 175 189 101 020 000
9 .000 .001 012 061 153 207 147 043 .002 10 .000 .000 .006 039 122 198 165 .055 003
10.000.000.003 024 092 186 206 103 .010 11 .000 .000 .001 .014 067 162 210 120 014
11 .000 .000 .001 .007 042 127 219 188 .043 12 .000 .000 .000 .004 .028 101 204 200 .051
12 .000 .000 .000 .002.014 063 170 250 129 13 .000 .000 .000 .001 009 047 146 .246 142
13 000 000 000 000 003.022 092 231 267 14 .000 .000 .000 .000 .002 015 073 211 275
14 .000 .000 .000 .000 .000 .005 031 132 343 15 000 .000 .000 .000 .000 .003 023 113 329
15 .000 .000 .000 .000 .000 .000 .005 .035 206 16 .000 .000 .000 .000 .000 .000 .003.028 -185
x
R=15
Probability
-3 -4 -5 .6
12-17
Probability
9⁰°
71-19
Probability
6°
.1 2 3 4 5 .6 -7 .8
0167 023 .002 .000 .000 .000 .000 .000 .000
1 315 096 017 002 .000 .000 .000 .000 .000
2 280 191 .058 .010 .001 .000 .000 .000 .000
3 156 -239 125 .034 .005 .000 .000 .000 .000
4.060 209 187 080 018 .002 .000 .000 .000
5 .017 136 208 138 047 008 .001.000.000
6.004 .068 178 184 094 024 003 .000 .000
7.001 .027 -120 193 148 057 .009 .000 .000
8 .000 .008.064 161 185 -107 028 .002.000
9 000 002 .028 107 185 161 064 .008.000
10 .000 .000 .009 .057 148 193 120 027 .001
11 .000 .000 .003 024 094 184 178 .068 004
12 .000 .000 .001 .008 047 138 208 136 .017
13 .000 .000 .000 .002 018 .080 187 209 .060
14 .000 .000 .000 .000 .005.034 125 239.156
15 000 .000 .000 .000 .001 010 058 191 280
16 .000 .000 .000 .000 .000 .002 017 096 315
17 .000 .000 .000 .000 .000 .000 .002 023 167
6°
.1 .2
o 185 028
1329 113
X
6
I'
n=18
Probability
x
-3
-5 .6 -7 .8 .9
0 150 018 002 .000 .000.000.000.000.000
1.300 .081 013 .001 .000 .000 .000 .000 .000
2.284 172 046 007 .001 .000 .000 .000 .000
3 168 230 105.025 003 .000 .000 .000 .000
4 .070 215 168 .061 .012 .001 .000 .000 .000
5.022 151 202 115 033 004 .000 .000 .000
6 .005 082 187 166 071 .015.001 .000 .000
7 .001 .035 138 189 121 .037.005.000.000
8 .000 .012 .081 173 167 077 015 .001 .000
9 .000 .003 039 128 185 128.039.003 .000
10 .000 .001 015 077 167 173 081 012 000
11 .000 .000 .005 037 121 189 138 .035 .001
12 .000 .000 .001 015 071.166.187.082.005
13 .000 .000 .000 .004 033 115 202 151 022
14 .000 .000 .000 .001 012 061 168 215 070
15 .000 .000 .000 .000 .003 025 105 230 168
16 .000 .000 .000 .000 .001.007 046 172 284
17 .000 .000 .000 .000 .000 .001 013 .081 300
18 .000 .000 .000 .000 .000 .000 .002.018 150
x 1
8 9 0 122
11-20
Probability
.2 -3 -4 -5
012
LTE 61
9⁰
-7 .8
6°
.001.000.000.000.000.000.000
Transcribed Image Text:9:35 BINOMIAL AND POIS... =16 .1 -7 .8 0 206 035 005 .000 .000 .000 .000 .000 .000 1 343 132 031 .005.000 .000 .000 .000 .000 2 267 231 092 022 003 000 000 000 000 3 129 250 170 063 014 002 .000 .000 .000 4 .043 188 219 127 042 007 .001 .000 .000 5 .010 103206 186 092 .024.003 .000 .000 6 002 043 147 207 153 061 012 001 000 7 000 014 081 177 196 118 035 003 000 8 000 003 035 118 196 177 .081 .014 000 Probability 3 4 5 .6 -7 .8 .9 003 .000 .000 .000 .000 .000 .000 023 .003 .000 .000 .000 .000 .000 2 275 211 073 015 002 .000 .000 .000 .000 3 142 246 146 047 009 .001 .000 .000 .000 4 .051 200 204 101 .028 004 .000 .000 .000 5.014 120 210 162 067 014 .001.000.000 6.003 .055 165 198 122 039 .006.000.000 7 000 020 101 189 175 084 019 .001.000 8 000 006 .049 142 196 142 049 006 000 9 000 .001 019 .084 175 189 101 020 000 9 .000 .001 012 061 153 207 147 043 .002 10 .000 .000 .006 039 122 198 165 .055 003 10.000.000.003 024 092 186 206 103 .010 11 .000 .000 .001 .014 067 162 210 120 014 11 .000 .000 .001 .007 042 127 219 188 .043 12 .000 .000 .000 .004 .028 101 204 200 .051 12 .000 .000 .000 .002.014 063 170 250 129 13 .000 .000 .000 .001 009 047 146 .246 142 13 000 000 000 000 003.022 092 231 267 14 .000 .000 .000 .000 .002 015 073 211 275 14 .000 .000 .000 .000 .000 .005 031 132 343 15 000 .000 .000 .000 .000 .003 023 113 329 15 .000 .000 .000 .000 .000 .000 .005 .035 206 16 .000 .000 .000 .000 .000 .000 .003.028 -185 x R=15 Probability -3 -4 -5 .6 12-17 Probability 9⁰° 71-19 Probability 6° .1 2 3 4 5 .6 -7 .8 0167 023 .002 .000 .000 .000 .000 .000 .000 1 315 096 017 002 .000 .000 .000 .000 .000 2 280 191 .058 .010 .001 .000 .000 .000 .000 3 156 -239 125 .034 .005 .000 .000 .000 .000 4.060 209 187 080 018 .002 .000 .000 .000 5 .017 136 208 138 047 008 .001.000.000 6.004 .068 178 184 094 024 003 .000 .000 7.001 .027 -120 193 148 057 .009 .000 .000 8 .000 .008.064 161 185 -107 028 .002.000 9 000 002 .028 107 185 161 064 .008.000 10 .000 .000 .009 .057 148 193 120 027 .001 11 .000 .000 .003 024 094 184 178 .068 004 12 .000 .000 .001 .008 047 138 208 136 .017 13 .000 .000 .000 .002 018 .080 187 209 .060 14 .000 .000 .000 .000 .005.034 125 239.156 15 000 .000 .000 .000 .001 010 058 191 280 16 .000 .000 .000 .000 .000 .002 017 096 315 17 .000 .000 .000 .000 .000 .000 .002 023 167 6° .1 .2 o 185 028 1329 113 X 6 I' n=18 Probability x -3 -5 .6 -7 .8 .9 0 150 018 002 .000 .000.000.000.000.000 1.300 .081 013 .001 .000 .000 .000 .000 .000 2.284 172 046 007 .001 .000 .000 .000 .000 3 168 230 105.025 003 .000 .000 .000 .000 4 .070 215 168 .061 .012 .001 .000 .000 .000 5.022 151 202 115 033 004 .000 .000 .000 6 .005 082 187 166 071 .015.001 .000 .000 7 .001 .035 138 189 121 .037.005.000.000 8 .000 .012 .081 173 167 077 015 .001 .000 9 .000 .003 039 128 185 128.039.003 .000 10 .000 .001 015 077 167 173 081 012 000 11 .000 .000 .005 037 121 189 138 .035 .001 12 .000 .000 .001 015 071.166.187.082.005 13 .000 .000 .000 .004 033 115 202 151 022 14 .000 .000 .000 .001 012 061 168 215 070 15 .000 .000 .000 .000 .003 025 105 230 168 16 .000 .000 .000 .000 .001.007 046 172 284 17 .000 .000 .000 .000 .000 .001 013 .081 300 18 .000 .000 .000 .000 .000 .000 .002.018 150 x 1 8 9 0 122 11-20 Probability .2 -3 -4 -5 012 LTE 61 9⁰ -7 .8 6° .001.000.000.000.000.000.000
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer