BC:6.2 Use the z-transform tables of one-sided z-transform tranform pairs and properties to determine the (causal) sampled time function for each of the following z-domain functions. Assume a Region of Convergence of |z|> 1 is sufficient for the one-sided z-transform. a.) b.) F(z): Ĥ(z) = - 52² - 13z + 17 232² 2 -1252-2 2² +0.5z 23-0.1522 X(z) = 1326 + +3 27 +0.826
BC:6.2 Use the z-transform tables of one-sided z-transform tranform pairs and properties to determine the (causal) sampled time function for each of the following z-domain functions. Assume a Region of Convergence of |z|> 1 is sufficient for the one-sided z-transform. a.) b.) F(z): Ĥ(z) = - 52² - 13z + 17 232² 2 -1252-2 2² +0.5z 23-0.1522 X(z) = 1326 + +3 27 +0.826
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
![**BC:6.2** Use the z-transform tables of one-sided z-transform transform pairs and properties to determine the (causal) sampled time function for each of the following z-domain functions. Assume a Region of Convergence of \(|z| > 1\) is sufficient for the one-sided z-transform.
a.)
\[
\hat{F}(z) = \frac{5z^2 - 13z + 17}{z^5}
\]
b.)
\[
\hat{H}(z) = \frac{-125z^{-2}}{z^2 + 0.5z} + \frac{23z^2}{z^3 - 0.15z^2}
\]
c.)
\[
\hat{X}(z) = \frac{13z^6 - 7z^4 + 3}{z^7 + 0.8z^6}
\]
d.)
\[
\hat{G}(z) = \left(\frac{3}{8}\right)\frac{z^{-1}e^{-j0.35\pi}}{ze^{-j0.35\pi} - 1} + \left(\frac{3}{8}\right)\frac{z^{-1}e^{j0.35\pi}}{ze^{j0.35\pi} - 1}
\]
e.)
\[
\hat{Y}(z) = \frac{15/j}{z + 0.25\sqrt{2} - j0.25\sqrt{2}} - \frac{15/j}{z + 0.25\sqrt{2} + j0.25\sqrt{2}} - \frac{4}{z - 1} + \frac{5}{z - 0.16}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F028a22e8-f094-478d-95cf-e0334af4f4a7%2F2762c58d-7de2-4b63-b9c4-8b04544dd818%2F0ab8hmo_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**BC:6.2** Use the z-transform tables of one-sided z-transform transform pairs and properties to determine the (causal) sampled time function for each of the following z-domain functions. Assume a Region of Convergence of \(|z| > 1\) is sufficient for the one-sided z-transform.
a.)
\[
\hat{F}(z) = \frac{5z^2 - 13z + 17}{z^5}
\]
b.)
\[
\hat{H}(z) = \frac{-125z^{-2}}{z^2 + 0.5z} + \frac{23z^2}{z^3 - 0.15z^2}
\]
c.)
\[
\hat{X}(z) = \frac{13z^6 - 7z^4 + 3}{z^7 + 0.8z^6}
\]
d.)
\[
\hat{G}(z) = \left(\frac{3}{8}\right)\frac{z^{-1}e^{-j0.35\pi}}{ze^{-j0.35\pi} - 1} + \left(\frac{3}{8}\right)\frac{z^{-1}e^{j0.35\pi}}{ze^{j0.35\pi} - 1}
\]
e.)
\[
\hat{Y}(z) = \frac{15/j}{z + 0.25\sqrt{2} - j0.25\sqrt{2}} - \frac{15/j}{z + 0.25\sqrt{2} + j0.25\sqrt{2}} - \frac{4}{z - 1} + \frac{5}{z - 0.16}
\]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,