Base Pairing in DNA, I. The two sides of the DNA double helix are connected by pairs of bases (adenine, thymine, cytosine, and guanine). Because of the geometric shape of these molecules, adenine bonds with thymine and cytosine bonds with guanine. Figure below shows the bonding of thymine and adenine. Each charge shown is ±e, and the H—N distance is 0.110 nm. (a) Calculate the net force that thymine exerts on adenine. Is it attractive or repulsive? To keep the calculations fairly simple, yet reasonable, consider only the forces due to the O—H—N and the N—H—N combinations, assuming that these two combinations are parallel to each other. Remember, however, that in the O—H—N set, the O- exerts a force on both the H+ and the N- , and likewise along the N—H—N set. (b) Calculate the force on the electron in the hydrogen atom, which is 0.0529 nm from the proton. Then compare the strength of the bonding force of the electron in hydrogen with the bonding force of the adenine–thymine molecules.

icon
Related questions
Question
100%

Base Pairing in DNA, I. The two sides of the DNA double helix are connected by pairs of bases (adenine, thymine, cytosine, and guanine). Because of the geometric shape of these molecules, adenine bonds with thymine and cytosine bonds with guanine. Figure below shows the bonding of thymine and adenine. Each charge shown is ±e, and the H—N distance is 0.110 nm.

(a) Calculate the net force that thymine exerts on adenine. Is it attractive or repulsive? To keep the calculations fairly simple, yet reasonable, consider only the forces due to the O—H—N and the N—H—N combinations, assuming that these two combinations are parallel to each other. Remember, however, that in the O—H—N set, the O- exerts a force on both the H+ and the N- , and likewise along the N—H—N set.

(b) Calculate the force on the electron in the hydrogen atom, which is 0.0529 nm from the proton. Then compare the strength of the bonding force of the electron in hydrogen with the bonding force of the adenine–thymine molecules.

H H
H
0.280
H
Adenine
nm
Thymine
H
H
0.300
H
nm
H
N
H
Transcribed Image Text:H H H 0.280 H Adenine nm Thymine H H 0.300 H nm H N H
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer