B1. Battery packs in electric go-carts need to last a fairly long time. The runtimes (time until it needs to be recharged) of the battery packs made by a particular company are Normally distributed with a mean of 2 hours and a standard deviation of 20 minutes. a) What percentage of these battery packs lasts longer than 3 hours? b) What is the third quartile for the run-time distribution? c) Battery packs that have a runtime in the highest 10% of the run-time distribution are highly sought after by go-cart drivers. How long does the battery pack have to last for it to fall in this highly sought-after class?
B1. Battery packs in electric go-carts need to last a fairly long time. The runtimes (time until it needs to be recharged) of the battery packs made by a particular company are Normally distributed with a mean of 2 hours and a standard deviation of 20 minutes. a) What percentage of these battery packs lasts longer than 3 hours? b) What is the third quartile for the run-time distribution? c) Battery packs that have a runtime in the highest 10% of the run-time distribution are highly sought after by go-cart drivers. How long does the battery pack have to last for it to fall in this highly sought-after class?
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![B1. Battery packs in electric go-carts need to last a fairly long time. The runtimes (time until
it needs to be recharged) of the battery packs made by a particular company are Normally
distributed with a mean of 2 hours and a standard deviation of 20 minutes.
a) What percentage of these battery packs lasts longer than 3 hours?
b) What is the third quartile for the run-time distribution?
c) Battery packs that have a runtime in the highest 10% of the run-time distribution are
highly sought after by go-cart drivers. How long does the battery pack have to last for
it to fall in this highly sought-after class?
2.1
2.2
TABLE A Standard Normal probabilities (continued)
Z
.01
0.0
.5040
0.1
5438
0.2
5832
0.3
.6217
0.4
.6591
0.5
.6950
0.6
.7291
0.7
.7611
0.8
.7910
0.9
.8186
1.0
.8438
1.1
.866-5
1.2
.8869
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
Table entry for z is the area under
the standard Normall curve to the
left of z.
3.1
3.2
3.3
3.4
.00
.5000
.5398
.5793
.6179
.6554
.6915
.7257
.7580
.7881
.8159
.8413
8643
.8849
.9032
.9192
.9332
9452
.9554
.9641
9713
.9772
.9821
.9861
.9893
9918
.9938
.9953
.9965
.9974
.9981
.998-7
.9990
.9993
.9995
.9997
9049
.9207
.9345
.946-3
.9564
.9649
9719
9778
.9826
9864
.9896
.9920
.9940
.9955
.9966
.9975
.9982
9987
.9991
.9993
.9995
.9997
.02
.5080
.5478
5871
.6255
.6628
.6985
.7324
.7642
.7939
.8212
.8461
.8686
.8888
.9066
.9222
.03
.5120
.5517
5910
.6293
.6664
.7019
.7357
.7673
.7967
.8238
.8485
.8708
.8907
.9082
.9236
.93-70
.9484
.9582
.9664
.9732
9788
.9834
.9357
.9474
.9573
.9656
.9726
978:3
.9830
9868
9871
.9898 .9901
9922
9925
.9941
9956
.9967
.9976
.9982
9987
.9991
9994
.9995
.9997
.9943
9957
Probability
.9968
.9977
.9983
.9988
.9991
.999.4
.9996
9997
.04
.5160
.5557
5948
.6331
.6700
.7054
.7389
.7704
.7995
.8264
.8508
.8729
.8925
.909-9
.9251
.9382
.9495
.9591
.9671
.9738
.9793
.9838
.9875
.9904
.9927
.9945
.9959
.9969
.9977
.9984
.9988
.9992
.9994
.9996
.9997
.05
.5199
.5596
5987
.6368
.6736
.7088
.7422
.7734
.8023
.8289
.8531
.8749
.8944
9115
.9265
.9394
.9505
.9599
.9678
9744
.9798
.9842
9878
.9906
9929
.9946
9960
.9970
9978
.9984
.9989
9992
.9994
.9996
.9997
.06
.5239
.56.36
.60.26
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.85.54
.8770
.8962
9131
.9279
9406
.9515
.9608
.9686
.9750
.9803
9846
9881
.9909
9931
.9948
.9961
9971
9979
9985
.9989
.9992
.9994
.9996
.9997
.07
.5279
.5675
.6064
.6443
-6808
.7157
.7486
.7794
.8078
.8340
.8577
.8790
.89.80
.9147
.9292
.9418
.9525
.9616
.9693
.9756
.9808
.98.50
.98.84
.9911
.99.32
.08
5319
.5714
-6-103
-6480
-6844
-7190
7517
7823
.8106
.8365
.8599
-8810
.8997
.9162
.9306
9429
95.35
.9625
.9699
.9761
9812
98.54
98.87
.9913
9934
.9951
.9963
.9949
.9962
.9972
.9973
.9979
.99.80
.9985
.99.86
.9989
.9990
.9992 .9993
.9995
.9995
.9996
.9996
.9997
.9997
.109
.5.359
.5753
.6141
.6517
.6879
.7224
.7549
.7852
.8133
.8.389
.8621
.8830
.9015
.9177
.9319
.9441
.9.545
.9633
.9706
.9767
9817
9.857
.9.890
.9916
.9936
.9952
.9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
.9998](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F5146f709-fa77-494d-9691-45852f79c859%2Fkj6ssin_processed.png&w=3840&q=75)
Transcribed Image Text:B1. Battery packs in electric go-carts need to last a fairly long time. The runtimes (time until
it needs to be recharged) of the battery packs made by a particular company are Normally
distributed with a mean of 2 hours and a standard deviation of 20 minutes.
a) What percentage of these battery packs lasts longer than 3 hours?
b) What is the third quartile for the run-time distribution?
c) Battery packs that have a runtime in the highest 10% of the run-time distribution are
highly sought after by go-cart drivers. How long does the battery pack have to last for
it to fall in this highly sought-after class?
2.1
2.2
TABLE A Standard Normal probabilities (continued)
Z
.01
0.0
.5040
0.1
5438
0.2
5832
0.3
.6217
0.4
.6591
0.5
.6950
0.6
.7291
0.7
.7611
0.8
.7910
0.9
.8186
1.0
.8438
1.1
.866-5
1.2
.8869
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
Table entry for z is the area under
the standard Normall curve to the
left of z.
3.1
3.2
3.3
3.4
.00
.5000
.5398
.5793
.6179
.6554
.6915
.7257
.7580
.7881
.8159
.8413
8643
.8849
.9032
.9192
.9332
9452
.9554
.9641
9713
.9772
.9821
.9861
.9893
9918
.9938
.9953
.9965
.9974
.9981
.998-7
.9990
.9993
.9995
.9997
9049
.9207
.9345
.946-3
.9564
.9649
9719
9778
.9826
9864
.9896
.9920
.9940
.9955
.9966
.9975
.9982
9987
.9991
.9993
.9995
.9997
.02
.5080
.5478
5871
.6255
.6628
.6985
.7324
.7642
.7939
.8212
.8461
.8686
.8888
.9066
.9222
.03
.5120
.5517
5910
.6293
.6664
.7019
.7357
.7673
.7967
.8238
.8485
.8708
.8907
.9082
.9236
.93-70
.9484
.9582
.9664
.9732
9788
.9834
.9357
.9474
.9573
.9656
.9726
978:3
.9830
9868
9871
.9898 .9901
9922
9925
.9941
9956
.9967
.9976
.9982
9987
.9991
9994
.9995
.9997
.9943
9957
Probability
.9968
.9977
.9983
.9988
.9991
.999.4
.9996
9997
.04
.5160
.5557
5948
.6331
.6700
.7054
.7389
.7704
.7995
.8264
.8508
.8729
.8925
.909-9
.9251
.9382
.9495
.9591
.9671
.9738
.9793
.9838
.9875
.9904
.9927
.9945
.9959
.9969
.9977
.9984
.9988
.9992
.9994
.9996
.9997
.05
.5199
.5596
5987
.6368
.6736
.7088
.7422
.7734
.8023
.8289
.8531
.8749
.8944
9115
.9265
.9394
.9505
.9599
.9678
9744
.9798
.9842
9878
.9906
9929
.9946
9960
.9970
9978
.9984
.9989
9992
.9994
.9996
.9997
.06
.5239
.56.36
.60.26
.6406
.6772
.7123
.7454
.7764
.8051
.8315
.85.54
.8770
.8962
9131
.9279
9406
.9515
.9608
.9686
.9750
.9803
9846
9881
.9909
9931
.9948
.9961
9971
9979
9985
.9989
.9992
.9994
.9996
.9997
.07
.5279
.5675
.6064
.6443
-6808
.7157
.7486
.7794
.8078
.8340
.8577
.8790
.89.80
.9147
.9292
.9418
.9525
.9616
.9693
.9756
.9808
.98.50
.98.84
.9911
.99.32
.08
5319
.5714
-6-103
-6480
-6844
-7190
7517
7823
.8106
.8365
.8599
-8810
.8997
.9162
.9306
9429
95.35
.9625
.9699
.9761
9812
98.54
98.87
.9913
9934
.9951
.9963
.9949
.9962
.9972
.9973
.9979
.99.80
.9985
.99.86
.9989
.9990
.9992 .9993
.9995
.9995
.9996
.9996
.9997
.9997
.109
.5.359
.5753
.6141
.6517
.6879
.7224
.7549
.7852
.8133
.8.389
.8621
.8830
.9015
.9177
.9319
.9441
.9.545
.9633
.9706
.9767
9817
9.857
.9.890
.9916
.9936
.9952
.9964
.9974
.9981
.9986
.9990
.9993
.9995
.9997
.9998
![TABLE B Random digits
Line
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
19223
73676
45467
52711
95592
68417
82739
60940
36009
38448
81486
59636
62568
45149
61041
14459
38167
73190
95857
35476
71487
13873
54580
71035
96746
96927
43909
15689
36759
69051
05007
68732
45740
27816
66925
08421
53645
66831
55588
12975
96767
72829
88565
62964
19687
37609
54973
00694
71546
07511
95034
47150
71709
38889
94007
35013
57890
72024
19365
48789
69487
88804
70206
32992
77684
26056
98532
32533
07118
55972
09984
81598
81507
09001
12149
19931
99477
14227
58984
64817
16632
55259
41807
78416
55658
44753
66812
68908
99404
13258
35964
50232
42628
88145
12633
59057
86278
05977
05233
88915
05756
99400
77558
93074
69971
15529
20807
17868
15412
18338
60513
04634
40325
75730
94322
31424
62183
04470
87664
39421
29077
95052
27102
43367
37823
36089
25330
06565
68288
87174
81194
84292
65561
18329
39100
77377
61421
40772
70708
13048
23822
97892
17797
83083
57857
66967
88737
19664
53946
41267
Table entry for p and C is the
critical value !" with probability p
lying to its right and probability C
lying between -t" and t".
TABLE D † distribution critical values
t
28713
01927
00095
60227
91481
72765
47511
24943
39638
24697
09297
71197
03699
66280
24709
80371
70632
29669
92099
65850
14863
90908
56027
49497
71868
74192
64359
14374
22913
09517
14873
08796
33302
21337
78458
28744
47836
21558
41098
45144
96012
63408
49376
69453
95806
83401
74351
65441
68743
16853
96409
27754
32863
40011
60779
85089
81676
61790
85453
39364
00412
19352
71080
03819
73698
65103
23417
84407
58806
04266
61683
73592
55892
72719
18442
77567
40085
13352
18638
84534
04197
43165
07051
35213
11206
75592
12609
47781
43563
72321
94591
77919
61762
46109
09931
60705
47500
20903
72460
84569
12531
42648
29485
85848
53791
57067
55300
90656
46816
42006
71238
73089
22553
56202
14526
62253
26185
90785
66979
35435
47052
75186
33063
96758
35119
88741
16925
49367
54303
06489
85576
93739
93623
37741
19876
08563
15373
33586
56934
81940
65194
44575
16953
59505
02150
02384
84552
62371
27601
79367
42544
82425
82226
48767
17297
50211
94383
87964
83485
76688
27649
84898
11486
02938
31893
50490
41448
65956
98624
43742
62224
87136
41842
27611
62103
48409
85117
81982
00795
87201
45195
31685
18132
04312
87151
79140
98481
79177
48394
00360
50842
24870
88604
69680
43163
90597
19909
22725
45403
32337
Probability p
82853
36290
90056
52573
59335
47487
14893
18883
41979
08708
39950
45785
11776
70915
32592
61181
75532
86382
84826
11937
51025
95761
81868
91596
39244
41903
36071
87209
08727
97245
96565
97150
09547
68508
31260
92454
14592
06928
51719
02428
53372
04178
12724
00900
58636
93600
67181
53340
88692
03316
df
.0025
.001
.0005
2.602
Upper-tail probability p
.25 .20 .15 .10 .05 .025 .02 .01 .005
1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355
3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249
2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325
2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323
2.831
3.135 3.527 3.819
22 0.686 0.858 1.061 1.321
2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158
2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396
3.659
0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50
0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416
100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
2* 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091
90%
98% 99% 99.5% 99.8% 99.9%
1.725 2.086 2.197 2.528
1.721 2.080 2.189 2.518
1.717 2.074 2.183 2.508
30
40
3.291
50%
60%
70% 80%
95% 96%
Confidence level C](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F18a59f0a-7c8f-49a1-8487-9703585f340d%2F5146f709-fa77-494d-9691-45852f79c859%2F9336ph8_processed.png&w=3840&q=75)
Transcribed Image Text:TABLE B Random digits
Line
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
19223
73676
45467
52711
95592
68417
82739
60940
36009
38448
81486
59636
62568
45149
61041
14459
38167
73190
95857
35476
71487
13873
54580
71035
96746
96927
43909
15689
36759
69051
05007
68732
45740
27816
66925
08421
53645
66831
55588
12975
96767
72829
88565
62964
19687
37609
54973
00694
71546
07511
95034
47150
71709
38889
94007
35013
57890
72024
19365
48789
69487
88804
70206
32992
77684
26056
98532
32533
07118
55972
09984
81598
81507
09001
12149
19931
99477
14227
58984
64817
16632
55259
41807
78416
55658
44753
66812
68908
99404
13258
35964
50232
42628
88145
12633
59057
86278
05977
05233
88915
05756
99400
77558
93074
69971
15529
20807
17868
15412
18338
60513
04634
40325
75730
94322
31424
62183
04470
87664
39421
29077
95052
27102
43367
37823
36089
25330
06565
68288
87174
81194
84292
65561
18329
39100
77377
61421
40772
70708
13048
23822
97892
17797
83083
57857
66967
88737
19664
53946
41267
Table entry for p and C is the
critical value !" with probability p
lying to its right and probability C
lying between -t" and t".
TABLE D † distribution critical values
t
28713
01927
00095
60227
91481
72765
47511
24943
39638
24697
09297
71197
03699
66280
24709
80371
70632
29669
92099
65850
14863
90908
56027
49497
71868
74192
64359
14374
22913
09517
14873
08796
33302
21337
78458
28744
47836
21558
41098
45144
96012
63408
49376
69453
95806
83401
74351
65441
68743
16853
96409
27754
32863
40011
60779
85089
81676
61790
85453
39364
00412
19352
71080
03819
73698
65103
23417
84407
58806
04266
61683
73592
55892
72719
18442
77567
40085
13352
18638
84534
04197
43165
07051
35213
11206
75592
12609
47781
43563
72321
94591
77919
61762
46109
09931
60705
47500
20903
72460
84569
12531
42648
29485
85848
53791
57067
55300
90656
46816
42006
71238
73089
22553
56202
14526
62253
26185
90785
66979
35435
47052
75186
33063
96758
35119
88741
16925
49367
54303
06489
85576
93739
93623
37741
19876
08563
15373
33586
56934
81940
65194
44575
16953
59505
02150
02384
84552
62371
27601
79367
42544
82425
82226
48767
17297
50211
94383
87964
83485
76688
27649
84898
11486
02938
31893
50490
41448
65956
98624
43742
62224
87136
41842
27611
62103
48409
85117
81982
00795
87201
45195
31685
18132
04312
87151
79140
98481
79177
48394
00360
50842
24870
88604
69680
43163
90597
19909
22725
45403
32337
Probability p
82853
36290
90056
52573
59335
47487
14893
18883
41979
08708
39950
45785
11776
70915
32592
61181
75532
86382
84826
11937
51025
95761
81868
91596
39244
41903
36071
87209
08727
97245
96565
97150
09547
68508
31260
92454
14592
06928
51719
02428
53372
04178
12724
00900
58636
93600
67181
53340
88692
03316
df
.0025
.001
.0005
2.602
Upper-tail probability p
.25 .20 .15 .10 .05 .025 .02 .01 .005
1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355
3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249
2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325
2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323
2.831
3.135 3.527 3.819
22 0.686 0.858 1.061 1.321
2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158
2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396
3.659
0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50
0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416
100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
2* 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091
90%
98% 99% 99.5% 99.8% 99.9%
1.725 2.086 2.197 2.528
1.721 2.080 2.189 2.518
1.717 2.074 2.183 2.508
30
40
3.291
50%
60%
70% 80%
95% 96%
Confidence level C
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman