b. Find the length of time required for the total pressure in a system containing N,O5 at an initial pressure of 0.100 atm to rise to 0.200 atm. c. Find the total pressure after 100 s of reaction. 117. Phosgene (C12CO), a poison gas used in World War I, is formed by the reaction of Cl, and CO. The proposed mechanism for the reaction is: Cl2 = 2 Cl Fast, equilibrium Cl + CO CICO Fast, equilibrium CICO + Cl2 CI2CO + Cl Slow What rate law is consistent with this mechanism? 118. The rate of decomposition of N2O3(g) to NO2(g) and NO(g) is monitored by measuring [NO2] at different times. The following tabulated data are obtained. [NO2](mol/L) 0.193 0.316 0.427 0.784 t(s) 884 1610 2460 50,000 The reaction follows a first-order rate law. Calculate the rate constant. Assume that after 50,000 s all the N2O3(g) had decomposed. k1 119. At 473 K, for the elementary reaction 2 NOCI(g) 2 NO(g) + Cl,(g) k-1 kị = 7.8 X 10²L/mol s and k-1 = 4.7 × 102 L²/mol? s A sample of NOCI is placed in a container and heated to 473 K. When the system comes to equilibrium, [NOCI] is found to be 0.12 mol/L. What are the concentrations of NO and Cl,? reactions is first order? Second order? How would you change each plot to make it linear?
b. Find the length of time required for the total pressure in a system containing N,O5 at an initial pressure of 0.100 atm to rise to 0.200 atm. c. Find the total pressure after 100 s of reaction. 117. Phosgene (C12CO), a poison gas used in World War I, is formed by the reaction of Cl, and CO. The proposed mechanism for the reaction is: Cl2 = 2 Cl Fast, equilibrium Cl + CO CICO Fast, equilibrium CICO + Cl2 CI2CO + Cl Slow What rate law is consistent with this mechanism? 118. The rate of decomposition of N2O3(g) to NO2(g) and NO(g) is monitored by measuring [NO2] at different times. The following tabulated data are obtained. [NO2](mol/L) 0.193 0.316 0.427 0.784 t(s) 884 1610 2460 50,000 The reaction follows a first-order rate law. Calculate the rate constant. Assume that after 50,000 s all the N2O3(g) had decomposed. k1 119. At 473 K, for the elementary reaction 2 NOCI(g) 2 NO(g) + Cl,(g) k-1 kị = 7.8 X 10²L/mol s and k-1 = 4.7 × 102 L²/mol? s A sample of NOCI is placed in a container and heated to 473 K. When the system comes to equilibrium, [NOCI] is found to be 0.12 mol/L. What are the concentrations of NO and Cl,? reactions is first order? Second order? How would you change each plot to make it linear?
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
I'm not sure how to do question 119
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY