b. 6. Use the limit comparison test to determine the convergence of the series. 2 11=13"-5 a. b. a. b. C. d. 1 n=1 4√n-1 7. For each of the series below, use at least two of the tests to determine the convergence of the series. Each test should be used at least once. Choose from: nth-term test, p-series test, integral test, limit comparison test, geometric series test, telescoping series test, direct comparison test. Clearly indicate which tests you are using. n=1 a. IM8 IMS IM8 IMS b. e. ¹⁰⁰ tan f. 0⁰ Zn=1 g. Σn=1 n=1 n * (n² + 1)² n-1 2n=1n²√√n n+4" n+6n 1 n=1 n 1 3" +2 00 '2n +3 n=0( 00 n n=1 0⁰0 C. 2n=1 ITAP n (-1)"n² 2 n² +1 COSNT d. Σ(-1)"e-n² e. (-1)+1√√n √√n C. 8. Determine the convergence or divergence of the series. If the series converges, does it converge absolutely or conditionally? E(-1)"+arctann 1 n=n(n² +1) h. Σs (-)" n=0 1 3n²-2n-15 i. n=4 1. Σ n=1 k. 1. Σk=1 1 n+1 n+2 3 n=1 n(n+3) 00 m. Ln=1 00 n. Zn=1 i. k. I. (2k-1)(k²-1) (k+1)(k²+4) e1/n n+1 j. (-1)"+¹¹ √n n=1 n+2 • (−1)”+¹ ln(n+1) S n=1 n sin n=2 n=0 (-1)" Inn COSNT n+1 m. En=1(−1)n-1e2/n
b. 6. Use the limit comparison test to determine the convergence of the series. 2 11=13"-5 a. b. a. b. C. d. 1 n=1 4√n-1 7. For each of the series below, use at least two of the tests to determine the convergence of the series. Each test should be used at least once. Choose from: nth-term test, p-series test, integral test, limit comparison test, geometric series test, telescoping series test, direct comparison test. Clearly indicate which tests you are using. n=1 a. IM8 IMS IM8 IMS b. e. ¹⁰⁰ tan f. 0⁰ Zn=1 g. Σn=1 n=1 n * (n² + 1)² n-1 2n=1n²√√n n+4" n+6n 1 n=1 n 1 3" +2 00 '2n +3 n=0( 00 n n=1 0⁰0 C. 2n=1 ITAP n (-1)"n² 2 n² +1 COSNT d. Σ(-1)"e-n² e. (-1)+1√√n √√n C. 8. Determine the convergence or divergence of the series. If the series converges, does it converge absolutely or conditionally? E(-1)"+arctann 1 n=n(n² +1) h. Σs (-)" n=0 1 3n²-2n-15 i. n=4 1. Σ n=1 k. 1. Σk=1 1 n+1 n+2 3 n=1 n(n+3) 00 m. Ln=1 00 n. Zn=1 i. k. I. (2k-1)(k²-1) (k+1)(k²+4) e1/n n+1 j. (-1)"+¹¹ √n n=1 n+2 • (−1)”+¹ ln(n+1) S n=1 n sin n=2 n=0 (-1)" Inn COSNT n+1 m. En=1(−1)n-1e2/n
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I need help with Number 6 a to c.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,