(b) Use the answer from part (a) to solve the linear system A-1 A -4x1 -3x1 21 21 I2 I3 = 88 -4 -3 + -12 -10 9 6 3-2 12x2 + 9x3 10x2 + 6x3 3x2 2x3 = = 5

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### Solving Linear Systems Using Matrix Inversion

Given matrix \( A \) and its inverse \( A^{-1} \):

\[ 
A = \begin{bmatrix}
-4 & -12 & 9 \\
-3 & -10 & 6 \\
1 & 3 & -2 \\
\end{bmatrix}
\]
\[
A^{-1} = \begin{bmatrix}
\text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\
\text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\
\text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\
\end{bmatrix}
\]

#### Step (b): Solving the Linear System

Use the inverse matrix \( A^{-1} \) from part (a) to solve the following system of linear equations:

\[ 
\begin{cases}
-4x_1 - 12x_2 + 9x_3 = -4 \\
-3x_1 - 10x_2 + 6x_3 = 5 \\
x_1 + 3x_2 - 2x_3 = -1 \\
\end{cases}
\]

This system can be written in matrix form as:
\[ A\vec{x} = \vec{b} \]

Where:
\[ A = \begin{bmatrix}
-4 & -12 & 9 \\
-3 & -10 & 6 \\
1 & 3 & -2 \\
\end{bmatrix}, \quad \vec{x} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}, \quad \vec{b} = \begin{bmatrix}
-4 \\
5 \\
-1 \\
\end{bmatrix} 
\]

To find \( \vec{x} \), we use \( A^{-1} \) from part (a):
\[ \vec{x} = A^{-1} \vec{b} \]
\[ \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix} = \begin{bmatrix}
\text{[
Transcribed Image Text:### Solving Linear Systems Using Matrix Inversion Given matrix \( A \) and its inverse \( A^{-1} \): \[ A = \begin{bmatrix} -4 & -12 & 9 \\ -3 & -10 & 6 \\ 1 & 3 & -2 \\ \end{bmatrix} \] \[ A^{-1} = \begin{bmatrix} \text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\ \text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\ \text{[Enter Value]} & \text{[Enter Value]} & \text{[Enter Value]} \\ \end{bmatrix} \] #### Step (b): Solving the Linear System Use the inverse matrix \( A^{-1} \) from part (a) to solve the following system of linear equations: \[ \begin{cases} -4x_1 - 12x_2 + 9x_3 = -4 \\ -3x_1 - 10x_2 + 6x_3 = 5 \\ x_1 + 3x_2 - 2x_3 = -1 \\ \end{cases} \] This system can be written in matrix form as: \[ A\vec{x} = \vec{b} \] Where: \[ A = \begin{bmatrix} -4 & -12 & 9 \\ -3 & -10 & 6 \\ 1 & 3 & -2 \\ \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} -4 \\ 5 \\ -1 \\ \end{bmatrix} \] To find \( \vec{x} \), we use \( A^{-1} \) from part (a): \[ \vec{x} = A^{-1} \vec{b} \] \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} \text{[
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education