b) Uranium 238 has a half-life of about 4.5 billion years. All the 238U now on Earth was created in stars and has been here since the formation of Earth about 4.5 billion years ago. Consider a kilogram of pure 288 U present at the formation of the Earth. i) Calculate the activity of the kilogram at that time. Sketch a graph of the activity of the uranium since then to the present day. Label the axes with appropriate numbers and units. Mark on your graph the half-life and the characteristic decay time. ii) 238 U decays through a chain of thirteen very short-lived radionuclides (longest half- live only 1600 years) before reaching a stable isotope of lead. If what remains of this uranium has for the last few million years been in a stable rock formation from which nothing escapes, approximately what activity will the rock have now?
b) Uranium 238 has a half-life of about 4.5 billion years. All the 238U now on Earth was created in stars and has been here since the formation of Earth about 4.5 billion years ago. Consider a kilogram of pure 288 U present at the formation of the Earth. i) Calculate the activity of the kilogram at that time. Sketch a graph of the activity of the uranium since then to the present day. Label the axes with appropriate numbers and units. Mark on your graph the half-life and the characteristic decay time. ii) 238 U decays through a chain of thirteen very short-lived radionuclides (longest half- live only 1600 years) before reaching a stable isotope of lead. If what remains of this uranium has for the last few million years been in a stable rock formation from which nothing escapes, approximately what activity will the rock have now?
Related questions
Question
bb
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
238U decays through a chain of thirteen very short-lived radionuclides (longest halflive only 1600 years) before reaching a stable isotope of lead. If what remains of this uranium has for the last few million years been in a stable rock formation from which nothing escapes, approximately what activity will the rock have now?
Solution
by Bartleby Expert