(b) The Fourier transform of a piecewise smooth function f(x), for which f∞ f(x)|dx exists and is finite, is given by 1 ∞ F(k) = F[f(x)] = 2πT f(x)e-dr. -ikx ∞ i. Show that for a real valued function f(x) its Fourier transform F(k) satisfies the identity F(-k) = F(k) ii. Assuming that the function f(x) is real valued and odd (f(x) = − f(x)), show that its Fourier transform F(k) = F[f(x)] is a purely imaginary function, that is, Re(F(k)) = 0. iii. Find the Fourier transform F(k) for the function f(x) = x exp(−|x|). Hint: fre X 1 x exp(ax) dx = exp(ax) ― a exp(ax) + constant.
(b) The Fourier transform of a piecewise smooth function f(x), for which f∞ f(x)|dx exists and is finite, is given by 1 ∞ F(k) = F[f(x)] = 2πT f(x)e-dr. -ikx ∞ i. Show that for a real valued function f(x) its Fourier transform F(k) satisfies the identity F(-k) = F(k) ii. Assuming that the function f(x) is real valued and odd (f(x) = − f(x)), show that its Fourier transform F(k) = F[f(x)] is a purely imaginary function, that is, Re(F(k)) = 0. iii. Find the Fourier transform F(k) for the function f(x) = x exp(−|x|). Hint: fre X 1 x exp(ax) dx = exp(ax) ― a exp(ax) + constant.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,