(b) Once upon a time, a bank was advertising an interest rate for savings account of i% per year. A competitor advertised a rate of i% per year compounded semiannually. The first bank advertised that they paid i% per year compounded quarterly. The other bank changed theirs to being compounded monthly. The first bank changed theirs to compounded daily. Finally, a bank said their interest rate was i% per year com- pounded continuously. What is the effective annual rate of 6% per year compounded semiannually? monthly? and continuously?

Essentials Of Investments
11th Edition
ISBN:9781260013924
Author:Bodie, Zvi, Kane, Alex, MARCUS, Alan J.
Publisher:Bodie, Zvi, Kane, Alex, MARCUS, Alan J.
Chapter1: Investments: Background And Issues
Section: Chapter Questions
Problem 1PS
icon
Related questions
Question
Please respond b, c, d, and e if possible.
(c) Suppose the effective annual interest rate per period is i and that you will
receive payments an amount a at times 1, 2, ..., n. Thus, the present
value is
2
b = ad + ad²+...+ ad" = a
k=1
where d = 1/(1+i). Give a closed form expression for the present
value b.
(d) You wish to borrow $500,000 to purchase real estate. The bank is
offering a 30 year loan at an interest rate of 6%. What would the
monthly payments be? (Hint: In the U.S., it's understood that this is
6% per year compounded monthly. Treat the period as one month and
that there are 360 payments. The first payment is due 1 month from
receiving the loan. The present value of this stream of payments should
be the loan amount. If you or someone you know has a mortgage,
you can check to see whether the monthly payment is correct. The
payment we computed is for principal and interest. Sometimes an
additional payment is required, which is escrowed for property taxes
and/or insurance.)
(e) Supppose you are considering a 15 year loan instead of the 30 year loan.
Usually, a 15 year loan would have a lower interest rate, but let's assume
that it's the same 6%. You might be guessing that the monthly payment
would be roughly double the monthly payment amount for the 30 year
loan. Please determine the monthly principal and interest payment for
the same loan except for 15 years. Was the monthly payment for 15
years close to double the monthly payment for 30 years?
Transcribed Image Text:(c) Suppose the effective annual interest rate per period is i and that you will receive payments an amount a at times 1, 2, ..., n. Thus, the present value is 2 b = ad + ad²+...+ ad" = a k=1 where d = 1/(1+i). Give a closed form expression for the present value b. (d) You wish to borrow $500,000 to purchase real estate. The bank is offering a 30 year loan at an interest rate of 6%. What would the monthly payments be? (Hint: In the U.S., it's understood that this is 6% per year compounded monthly. Treat the period as one month and that there are 360 payments. The first payment is due 1 month from receiving the loan. The present value of this stream of payments should be the loan amount. If you or someone you know has a mortgage, you can check to see whether the monthly payment is correct. The payment we computed is for principal and interest. Sometimes an additional payment is required, which is escrowed for property taxes and/or insurance.) (e) Supppose you are considering a 15 year loan instead of the 30 year loan. Usually, a 15 year loan would have a lower interest rate, but let's assume that it's the same 6%. You might be guessing that the monthly payment would be roughly double the monthly payment amount for the 30 year loan. Please determine the monthly principal and interest payment for the same loan except for 15 years. Was the monthly payment for 15 years close to double the monthly payment for 30 years?
6. If the effective interest rate is i per period and you invest b dollars at time
0, then the value at time n is b(1 + i)”. For example, if at time 0 you
invest $100 at an effective interest rate of 6% per year, then the value at
time 1 is $100(1+0.06) = $106. dollars. At time 2, the value will be
$100 (1 + 0.06)² = $112.36. Similarly, the present value (value at time 0)
of $100 received 2 years from now would be $100(1+0.06)-²≈ $88.99.
Sometimes it's convenient to define d = 1/(1 + i) so that we would have
$100(1+i)n = $100d".
If the interest rate per year is i compounded semiannually, then the effective
annual interest rate is
(¹ + 2)²³ - 1₁
1.
For example, if the interest rate is 6% per year compounded semiannually,
the effective annual interest rate is
1 +
.06
2
2
- 1 ≈ 6.09%.
If the interest rate per year is i compounded quarterly, then the effective
annual interest rate is
4
(¹ + 4) * - 1
1.
(a) If the interest rate is 6% per year compounded quarterly, what is the
effective annual interest rate?
(b) Once upon a time, a bank was advertising an interest rate for savings
account of i% per year. A competitor advertised a rate of i% per year
compounded semiannually. The first bank advertised that they paid i%
per year compounded quarterly. The other bank changed theirs to being
compounded monthly. The first bank changed theirs to compounded
daily. Finally, a bank said their interest rate was i% per year com-
pounded continuously. What is the effective annual rate of 6% per year
compounded semiannually? monthly? and continuously?
Transcribed Image Text:6. If the effective interest rate is i per period and you invest b dollars at time 0, then the value at time n is b(1 + i)”. For example, if at time 0 you invest $100 at an effective interest rate of 6% per year, then the value at time 1 is $100(1+0.06) = $106. dollars. At time 2, the value will be $100 (1 + 0.06)² = $112.36. Similarly, the present value (value at time 0) of $100 received 2 years from now would be $100(1+0.06)-²≈ $88.99. Sometimes it's convenient to define d = 1/(1 + i) so that we would have $100(1+i)n = $100d". If the interest rate per year is i compounded semiannually, then the effective annual interest rate is (¹ + 2)²³ - 1₁ 1. For example, if the interest rate is 6% per year compounded semiannually, the effective annual interest rate is 1 + .06 2 2 - 1 ≈ 6.09%. If the interest rate per year is i compounded quarterly, then the effective annual interest rate is 4 (¹ + 4) * - 1 1. (a) If the interest rate is 6% per year compounded quarterly, what is the effective annual interest rate? (b) Once upon a time, a bank was advertising an interest rate for savings account of i% per year. A competitor advertised a rate of i% per year compounded semiannually. The first bank advertised that they paid i% per year compounded quarterly. The other bank changed theirs to being compounded monthly. The first bank changed theirs to compounded daily. Finally, a bank said their interest rate was i% per year com- pounded continuously. What is the effective annual rate of 6% per year compounded semiannually? monthly? and continuously?
Expert Solution
Step 1

Information Provided:

  • Interest rate = 6%

 

NOTE:

  • As per our policy, we only answer one question when different questions are posted. Therefore, the first question is answered. Please repost the remaining questions separately.

 

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Effective Annual Rate Of Return
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, finance and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Essentials Of Investments
Essentials Of Investments
Finance
ISBN:
9781260013924
Author:
Bodie, Zvi, Kane, Alex, MARCUS, Alan J.
Publisher:
Mcgraw-hill Education,
FUNDAMENTALS OF CORPORATE FINANCE
FUNDAMENTALS OF CORPORATE FINANCE
Finance
ISBN:
9781260013962
Author:
BREALEY
Publisher:
RENT MCG
Financial Management: Theory & Practice
Financial Management: Theory & Practice
Finance
ISBN:
9781337909730
Author:
Brigham
Publisher:
Cengage
Foundations Of Finance
Foundations Of Finance
Finance
ISBN:
9780134897264
Author:
KEOWN, Arthur J., Martin, John D., PETTY, J. William
Publisher:
Pearson,
Fundamentals of Financial Management (MindTap Cou…
Fundamentals of Financial Management (MindTap Cou…
Finance
ISBN:
9781337395250
Author:
Eugene F. Brigham, Joel F. Houston
Publisher:
Cengage Learning
Corporate Finance (The Mcgraw-hill/Irwin Series i…
Corporate Finance (The Mcgraw-hill/Irwin Series i…
Finance
ISBN:
9780077861759
Author:
Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Jeffrey Jaffe, Bradford D Jordan Professor
Publisher:
McGraw-Hill Education