(b) Let f be analytic on the unit disk D(0,1). If f (z) ± 0 for all z E D(0,1),and set m = min |f (z)|, prove that there is a point zo with |zo] = 1/2 such that |f (z,)| |z]<1/2 = m.
(b) Let f be analytic on the unit disk D(0,1). If f (z) ± 0 for all z E D(0,1),and set m = min |f (z)|, prove that there is a point zo with |zo] = 1/2 such that |f (z,)| |z]<1/2 = m.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
need help with part b, using maximum modulus principle complex variables, thanks for clear explanation
![(a) State the Maximum Modulus theorem/principle for analytic functions on region 2.
Maximum Modulus Principle: Let f be an analytic function in a region 2 and a E N. If
If (z)| < |f (a)| for all z E N, then f is constant on 2. In other words, any non-constant
analytic function on a region n does not attain a maximum modulus on 2.
(b) Let f be analytic on the unit disk D(0,1). If f (z) # 0 for all z e D(0,1),and set
m = ¸min_ |f(z)|, prove that there is a point z, with |Zo| = 1/2 such that |ƒ (zo)| = m.
|z|S1/2](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0548f28d-2867-4ce8-91e2-809a65372be3%2F9045323d-0786-42d4-a440-a267e7ffafd5%2Fomikhr_processed.png&w=3840&q=75)
Transcribed Image Text:(a) State the Maximum Modulus theorem/principle for analytic functions on region 2.
Maximum Modulus Principle: Let f be an analytic function in a region 2 and a E N. If
If (z)| < |f (a)| for all z E N, then f is constant on 2. In other words, any non-constant
analytic function on a region n does not attain a maximum modulus on 2.
(b) Let f be analytic on the unit disk D(0,1). If f (z) # 0 for all z e D(0,1),and set
m = ¸min_ |f(z)|, prove that there is a point z, with |Zo| = 1/2 such that |ƒ (zo)| = m.
|z|S1/2
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)