(b) Given the system of equations (7.6) on page 55 of the notes, let us write z = 1 - s. Now for constants ao and a₁, let us define the function L(z(t), i(t), r(t)) = aoz(t) + i(t) + a₁r(t). Write down sufficient conditions in terms of ao and a₁ in order that L(z(t), i(t), r(t)) be a Lyapunov function with respect to the origin point (z, i, r) = (0,0,0).
(b) Given the system of equations (7.6) on page 55 of the notes, let us write z = 1 - s. Now for constants ao and a₁, let us define the function L(z(t), i(t), r(t)) = aoz(t) + i(t) + a₁r(t). Write down sufficient conditions in terms of ao and a₁ in order that L(z(t), i(t), r(t)) be a Lyapunov function with respect to the origin point (z, i, r) = (0,0,0).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![(b) Given the system of equations (7.6) on page 55 of the notes, let us write z = 1 - s.
Now for constants ao and a₁, let us define the function
L(z(t), i(t), r(t)) = a¸² (t) + i(t) + ªr(t).
Write down sufficient conditions in terms of ao and an in order that L(z(t), i(t), r(t)) be a
Lyapunov function with respect to the origin point (z, i, r) = (0,0,0).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fca349364-44cd-4f80-973a-127055b51819%2F72498c61-aed6-489b-85f7-ef6bba76bffe%2Fhfb2ho_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(b) Given the system of equations (7.6) on page 55 of the notes, let us write z = 1 - s.
Now for constants ao and a₁, let us define the function
L(z(t), i(t), r(t)) = a¸² (t) + i(t) + ªr(t).
Write down sufficient conditions in terms of ao and an in order that L(z(t), i(t), r(t)) be a
Lyapunov function with respect to the origin point (z, i, r) = (0,0,0).
![5
dt
μ-Bsi-us
Bisit Hệ
102
25 LT.
(7.6)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fca349364-44cd-4f80-973a-127055b51819%2F72498c61-aed6-489b-85f7-ef6bba76bffe%2F9n447i_processed.jpeg&w=3840&q=75)
Transcribed Image Text:5
dt
μ-Bsi-us
Bisit Hệ
102
25 LT.
(7.6)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)