Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question

Transcribed Image Text:### Calculating Partial Derivatives for a Given Function
For the function \( f(x, y) = \frac{x^2 + 4y^3}{\frac{3}{4}x + y} \), follow these steps to find the partial derivatives \( f_x \), \( f_y \), as well as evaluate \( f_x(5, -5) \) and \( f_y(1, 3) \):
1. **Find the Partial Derivative with Respect to \( x \), \( f_x \):**
- Begin by applying the quotient rule for differentiation, where \( u(x, y) = x^2 + 4y^3 \) and \( v(x, y) = \frac{3}{4}x + y \).
- The quotient rule states that \( \left( \frac{u}{v} \right)_x = \frac{u_x v - u v_x}{v^2} \).
Calculate \( u_x \):
\( u_x = \frac{\partial}{\partial x} (x^2 + 4y^3) = 2x \)
Calculate \( v_x \):
\( v_x = \frac{\partial}{\partial x} \left(\frac{3}{4}x + y\right) = \frac{3}{4} \)
Therefore,
\( f_x = \frac{(2x)(\frac{3}{4}x + y) - (x^2 + 4y^3)(\frac{3}{4})}{\left(\frac{3}{4}x + y\right)^2} \)
2. **Find the Partial Derivative with Respect to \( y \), \( f_y \):**
- Similarly, use the quotient rule where \( u(x, y) = x^2 + 4y^3 \) and \( v(x, y) = \frac{3}{4}x + y \).
- The quotient rule for \( y \) states that \( \left( \frac{u}{v} \right)_y = \frac{u_y v - u v_y}{v^2} \).
Calculate \( u_y \):
\( u_y = \frac{\partial}{\partial y} (x^2 + 4y^3) =
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning