B Find f (x + x-¹) dx B5 +In(B) - -33234 5 15 32 B5 + In(B) − (³² + ln(2)) 5 B5 + ln(B) − ln(2) - where B > 2 32 B5 + In(B) - (3² + In (2)) 5 B5+ln(B) - 0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculating an Integral for Educational Purposes

In this exercise, we are asked to find the integral of the function \(x^4 + x^{-1}\) from 2 to \(B\), where \( B > 2 \). The problem is given as:

\[ \int_{2}^{B} (x^4 + x^{-1}) \, dx \]

Here are the steps and solution options for this problem:

1. **Integral Definition:**

   The given integral is:
   \[ \int_{2}^{B} (x^4 + x^{-1}) \, dx \]

2. **Integration:**

   To solve this integral, we need to integrate each term separately:
   \[ \int x^4 \, dx + \int x^{-1} \, dx \]

   - The integral of \(x^4\) is:
     \[ \int x^4 \, dx = \frac{1}{5} x^5 \]

   - The integral of \(x^{-1}\) is:
     \[ \int x^{-1} \, dx = \ln(x) \]

3. **Combining the Results:**

   By combining the integrals, we get:
   \[ \left[ \frac{1}{5} x^5 + \ln(x) \right]_2^B \]

4. **Evaluating the Definite Integral:**

   Substitute the upper and lower limits into the result:
   \[ \left( \frac{1}{5} B^5 + \ln(B) \right) - \left( \frac{1}{5} (2)^5 + \ln(2) \right) \]

5. **Simplifying the Expression:**

   Simplify the expression:
   \[ \frac{1}{5} B^5 + \ln(B) - \left( \frac{32}{5} + \ln(2) \right) \]

### Multiple Choice Options:

The options provided are:

- \( \frac{1}{5} B^5 + \ln(B) - \left( \frac{32}{5} + \ln(2) \right) \)
- \( \frac{1}{5} B^5 + \ln(B) - \frac{32}{5} \)
- \( \frac{1}{5} B^
Transcribed Image Text:### Calculating an Integral for Educational Purposes In this exercise, we are asked to find the integral of the function \(x^4 + x^{-1}\) from 2 to \(B\), where \( B > 2 \). The problem is given as: \[ \int_{2}^{B} (x^4 + x^{-1}) \, dx \] Here are the steps and solution options for this problem: 1. **Integral Definition:** The given integral is: \[ \int_{2}^{B} (x^4 + x^{-1}) \, dx \] 2. **Integration:** To solve this integral, we need to integrate each term separately: \[ \int x^4 \, dx + \int x^{-1} \, dx \] - The integral of \(x^4\) is: \[ \int x^4 \, dx = \frac{1}{5} x^5 \] - The integral of \(x^{-1}\) is: \[ \int x^{-1} \, dx = \ln(x) \] 3. **Combining the Results:** By combining the integrals, we get: \[ \left[ \frac{1}{5} x^5 + \ln(x) \right]_2^B \] 4. **Evaluating the Definite Integral:** Substitute the upper and lower limits into the result: \[ \left( \frac{1}{5} B^5 + \ln(B) \right) - \left( \frac{1}{5} (2)^5 + \ln(2) \right) \] 5. **Simplifying the Expression:** Simplify the expression: \[ \frac{1}{5} B^5 + \ln(B) - \left( \frac{32}{5} + \ln(2) \right) \] ### Multiple Choice Options: The options provided are: - \( \frac{1}{5} B^5 + \ln(B) - \left( \frac{32}{5} + \ln(2) \right) \) - \( \frac{1}{5} B^5 + \ln(B) - \frac{32}{5} \) - \( \frac{1}{5} B^
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning