B E None (i), (ii) (iii), (iv) Which of the following are ring homomorphisms? (i): f: (Q(√2), +,-) → (Q(√3), +,-), a +b√2+a+b√3. (ii): f: C Rx R, a +bi (a, b). (iii): f: (QxQ, +,-) → (Q(√2), +,-), (x,y) →x+yv2. (iv): f: CR, a +bi+ a² + b². ...

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question:**

Which of the following are ring homomorphisms?

**Options:**

(i) \( f : (\mathbb{Q}(\sqrt{2}), +, \cdot) \to (\mathbb{Q}(\sqrt{3}), +, \cdot) \), defined by \( a + b\sqrt{2} \mapsto a + b\sqrt{3} \).

(ii) \( f : \mathbb{C} \to \mathbb{R} \times \mathbb{R}, \, a + bi \mapsto (a, b) \).

(iii) \( f : (\mathbb{Q} \times \mathbb{Q}, +, \cdot) \to (\mathbb{Q}(\sqrt{2}), +, \cdot) \), defined by \( (x, y) \mapsto x + y\sqrt{2} \).

(iv) \( f : \mathbb{C} \to \mathbb{R}, \, a + bi \mapsto a^2 + b^2 \).

**Choices:**

- A: None
- B: (i)
- C: (i), (ii)
- D: (ii)
- E: (iii), (iv)
Transcribed Image Text:**Question:** Which of the following are ring homomorphisms? **Options:** (i) \( f : (\mathbb{Q}(\sqrt{2}), +, \cdot) \to (\mathbb{Q}(\sqrt{3}), +, \cdot) \), defined by \( a + b\sqrt{2} \mapsto a + b\sqrt{3} \). (ii) \( f : \mathbb{C} \to \mathbb{R} \times \mathbb{R}, \, a + bi \mapsto (a, b) \). (iii) \( f : (\mathbb{Q} \times \mathbb{Q}, +, \cdot) \to (\mathbb{Q}(\sqrt{2}), +, \cdot) \), defined by \( (x, y) \mapsto x + y\sqrt{2} \). (iv) \( f : \mathbb{C} \to \mathbb{R}, \, a + bi \mapsto a^2 + b^2 \). **Choices:** - A: None - B: (i) - C: (i), (ii) - D: (ii) - E: (iii), (iv)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,