3. Let R be the subring (a+b√10 | a,b e Z) of the field of real numbers. (a) The map N:R-Z given by a+b√10(a+b√10)(a - bic =a² - 10b² is such that N(uv) = N(u)N(v) for all u,v e R and N(u) = 0 if ar only if u = 0. ✓(b) u is a unit in R if and only if N(u) ±1.
3. Let R be the subring (a+b√10 | a,b e Z) of the field of real numbers. (a) The map N:R-Z given by a+b√10(a+b√10)(a - bic =a² - 10b² is such that N(uv) = N(u)N(v) for all u,v e R and N(u) = 0 if ar only if u = 0. ✓(b) u is a unit in R if and only if N(u) ±1.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![3. Let R be the subring (a+b√10 | a,b e Z) of the field of real numbers.
(a) The map N:R-Z given by a+b√10+(a+b√10)(a - b√ic
a²- 10b² is such that N(uv) = N(u)N(v) for all u,ve R and N(u) = 0 if ar
only if u = 0.
=
(b) u is a unit in R if and only if N(u) = ±1.
(c) 2, 3, 4+ √10 and 4 - √10 are irreducible elements of R.
(d) 2, 3, 4 + √10 and 4-
-
-(4+√10)(4-√10).j
=
10 are not prime elements of R. (Hint: 3-2 =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F43a4c8ef-c187-4fec-97ad-37576ae75fb4%2F6fa9e9a0-8845-45be-95c9-5d1e38fdd14c%2F5swxci_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3. Let R be the subring (a+b√10 | a,b e Z) of the field of real numbers.
(a) The map N:R-Z given by a+b√10+(a+b√10)(a - b√ic
a²- 10b² is such that N(uv) = N(u)N(v) for all u,ve R and N(u) = 0 if ar
only if u = 0.
=
(b) u is a unit in R if and only if N(u) = ±1.
(c) 2, 3, 4+ √10 and 4 - √10 are irreducible elements of R.
(d) 2, 3, 4 + √10 and 4-
-
-(4+√10)(4-√10).j
=
10 are not prime elements of R. (Hint: 3-2 =
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
![(c) 2, 3, 4+ √10 and 4 - √10 are irreducible elements of R.
(d) 2, 3, 4 + √10 and 4-√10 are not prime elements of R. [Hint: 3-2
= (4+ √10)(4-√10).j](https://content.bartleby.com/qna-images/question/43a4c8ef-c187-4fec-97ad-37576ae75fb4/0a9fe99f-f92c-4d83-b820-d9d0bcd7ef2a/3o4vfmp_thumbnail.jpeg)
Transcribed Image Text:(c) 2, 3, 4+ √10 and 4 - √10 are irreducible elements of R.
(d) 2, 3, 4 + √10 and 4-√10 are not prime elements of R. [Hint: 3-2
= (4+ √10)(4-√10).j
Solution
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)