a²x, a?x? Po(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax + 2! P3 (x) = 1 + ax + 2! %3D 3! a?? ax? p4 (x) = 1+ ax + 2! atx + 4! Pn (x) = as 3! k! k=0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

ps1: Please help me provide a solution for this

Your answer is correct.
Find the Maclaurin polynomials of orders n = 0,1,2,3, and 4, and then find the nth Maclaurin polynomials, p„(x) for the function in
sigma notation for
f(x) = eax
Choose the correct answer.
po(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax +
2!
ax? a?x?
+
2!
P3 (x) = 1 + ax +
3!
p4 (x) = 1+ ax +
+
2!
3!
4! Pn(x) =
k!
k=0
ax? ax?
po(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax +
p3 (x) = 1+ ax +
2
3
a a?x? at xA
P4 (x) = 1+ ax +
2
+
+
3
Pa(x) = x"
4
k.
k-0
a²x? a?x?
po(x) = 1, p1(x) = 1 – ax, p2(x) =1- ax +
P3 (x) = 1 – ax +
2
2
3
a²x? a?x?
Pa (x) = E(-1*
k
p4 (x) = 1 – ax +
-
-
3
4
k0
ax?
Po(x) = 1, p1(x) = 1 – ax, p2(x) = 1 – ax +
p3 (x) = 1 – ax +
2!
2!
3!
P4(x) = 1 – ax +
2!
Pa(x) = E(-1)*a*x*
k!
3!
4!
k=0
Po (x) = 1, p1(x) = 1 + ax, p2(x) = 1+ ax + a²x², p3 (x) = 1 + ax + a²x² + a°x³.
P4(x) = 1+ ax + a²x² + a°x³ + a*x*, pa(x) = },a*x*
k=0
Transcribed Image Text:Your answer is correct. Find the Maclaurin polynomials of orders n = 0,1,2,3, and 4, and then find the nth Maclaurin polynomials, p„(x) for the function in sigma notation for f(x) = eax Choose the correct answer. po(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax + 2! ax? a?x? + 2! P3 (x) = 1 + ax + 3! p4 (x) = 1+ ax + + 2! 3! 4! Pn(x) = k! k=0 ax? ax? po(x) = 1, p1(x) = 1 + ax, p2(x) = 1 + ax + p3 (x) = 1+ ax + 2 3 a a?x? at xA P4 (x) = 1+ ax + 2 + + 3 Pa(x) = x" 4 k. k-0 a²x? a?x? po(x) = 1, p1(x) = 1 – ax, p2(x) =1- ax + P3 (x) = 1 – ax + 2 2 3 a²x? a?x? Pa (x) = E(-1* k p4 (x) = 1 – ax + - - 3 4 k0 ax? Po(x) = 1, p1(x) = 1 – ax, p2(x) = 1 – ax + p3 (x) = 1 – ax + 2! 2! 3! P4(x) = 1 – ax + 2! Pa(x) = E(-1)*a*x* k! 3! 4! k=0 Po (x) = 1, p1(x) = 1 + ax, p2(x) = 1+ ax + a²x², p3 (x) = 1 + ax + a²x² + a°x³. P4(x) = 1+ ax + a²x² + a°x³ + a*x*, pa(x) = },a*x* k=0
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning