Average Linear Angular Torque Mass Tension Time Acceleration Acceleration a (rad/s?) Time m |(s) T (N) (m N) t (s) US ths a (m/s) (kg) |25.94 0.050 |(50 grams) 25.68 37.56 17.06 0.100 |(100 grams) 25.95 17.39 0.150 11.64 (150 grams) 13.05 16.345 www 10.94 T4.53 11.18 0.200 (200 grams) 9.36 9.64 14.29 .250 (250 grams)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
100%
All information is there plus formulas to compete calculations. Please answer for the rest of the table by gram (linaer acceleration, angular acceleration, tension, torque) with given measurements and formulas.
### Moment of Inertia Calculations

#### Components and Calculations

1. **Shaft**
   - Moment of Inertia Formula: \(\frac{1}{2}MR^2\)
   - Calculated Moment of Inertia: \(0.00000167 \, \text{kg} \cdot \text{m}^2\)

2. **Threaded Rod**
   - Moment of Inertia Formula: \(\frac{1}{2} MRd^2\)
   - Calculated Moment of Inertia: \(0.00378012 \, \text{kg} \cdot \text{m}^2\)

3. **0.1-kg Masses**
   - Total Moment of Inertia: \(2 \cdot (1\text{kg}) \cdot d^2\)
   - Calculated Moment of Inertia: \(52.8125 \, \text{kg} \cdot \text{m}^2\)

4. **4 Wing Nuts**
   - Moment of Inertia Formula: \(M \cdot \text{wingnuts} \cdot d^2\)
   - Calculated Moment of Inertia: \(4.1790625 \, \text{kg} \cdot \text{m}^2\)

5. **Total Moment of Inertia**
   - Sum of all components: \(56.9953594 \, \text{kg} \cdot \text{m}^2\)

#### Measurements and Masses

- **Height (h):** 
  - 0.7 m

- **Masses:**
  - Mass of Shaft: \(0.3924 \, \text{kg}\)
  - Mass of Threaded Rod: \(0.0628 \, \text{kg}\) 
  - Mass of 0.1-kg Mass: \(0.1 \, \text{kg}\)
  - Mass of 4 Wing Nuts: \(0.0234 \, \text{kg}\)

#### Dimensions

- **Radius of Shaft:** 
  - \(0.00925 \, \text{m}\)

- **Length of Threaded Rod:** 
  - \(0.34 \, \text{m}\)

- **Distances \(d\) from Center:**
  - \(0.1625
Transcribed Image Text:### Moment of Inertia Calculations #### Components and Calculations 1. **Shaft** - Moment of Inertia Formula: \(\frac{1}{2}MR^2\) - Calculated Moment of Inertia: \(0.00000167 \, \text{kg} \cdot \text{m}^2\) 2. **Threaded Rod** - Moment of Inertia Formula: \(\frac{1}{2} MRd^2\) - Calculated Moment of Inertia: \(0.00378012 \, \text{kg} \cdot \text{m}^2\) 3. **0.1-kg Masses** - Total Moment of Inertia: \(2 \cdot (1\text{kg}) \cdot d^2\) - Calculated Moment of Inertia: \(52.8125 \, \text{kg} \cdot \text{m}^2\) 4. **4 Wing Nuts** - Moment of Inertia Formula: \(M \cdot \text{wingnuts} \cdot d^2\) - Calculated Moment of Inertia: \(4.1790625 \, \text{kg} \cdot \text{m}^2\) 5. **Total Moment of Inertia** - Sum of all components: \(56.9953594 \, \text{kg} \cdot \text{m}^2\) #### Measurements and Masses - **Height (h):** - 0.7 m - **Masses:** - Mass of Shaft: \(0.3924 \, \text{kg}\) - Mass of Threaded Rod: \(0.0628 \, \text{kg}\) - Mass of 0.1-kg Mass: \(0.1 \, \text{kg}\) - Mass of 4 Wing Nuts: \(0.0234 \, \text{kg}\) #### Dimensions - **Radius of Shaft:** - \(0.00925 \, \text{m}\) - **Length of Threaded Rod:** - \(0.34 \, \text{m}\) - **Distances \(d\) from Center:** - \(0.1625
### Rotational Dynamics Experiment Data Analysis

**Equipment Contributions to Moment of Inertia:**

| Component                     | Moment of Inertia (kg·m²) |
|-------------------------------|---------------------------|
| Shaft                         | 0.00000128                |
| Threaded Rod                  | 0.00237802                |
| 0.1 kg Masses (2 masses)      | 52.81235                  |
| 4 Wing Nuts                   | 0.17906103                |
| **Total Moment of Inertia**   | 55.99353033               |

**Distance Measurements:**

- Height (H): 0.720 m
- Radius (r): 0.07 m

**Experiment Data:**

| Mass \( m \) (kg) | Time (s)     | Average Time \( t \) (s) | Linear Acceleration \( a \) (m/s²) | Angular Acceleration \( \alpha \) (rad/s²) | Tension \( T \) (N) | Torque \( \tau \) (m·N) |
|-------------------|--------------|--------------------------|-----------------------------------|---------------------------------------------|--------------------|--------------------------|
| 0.050 (50 grams)  | 25.49, 25.87 | 25.75                    |                                   |                                             |                    |                          |
| 0.100 (100 grams) | 17.06, 17.39 | 17.225                   |                                   |                                             |                    |                          |
| 0.150 (150 grams) | 11.64, 13.65 | 12.645                   |                                   |                                             |                    |                          |
| 0.200 (200 grams) | 16.94, 11.18 | 14.06                    |                                   |                                             |                    |                          |
| 0.250 (250 grams) | 9.36, 9.86   | 9.61                     |                                   |                                             |                    |                          |

**Formulas:**

- Linear Acceleration: \( a = \frac{2H}{t^2} \)
- Angular Acceleration: \( \alpha = \frac{a}{R} \)
- Tension Calculation: \( T = m(g - a) \) with \( g = 9.80 \, \text{m/s}^2 \)
- Torque
Transcribed Image Text:### Rotational Dynamics Experiment Data Analysis **Equipment Contributions to Moment of Inertia:** | Component | Moment of Inertia (kg·m²) | |-------------------------------|---------------------------| | Shaft | 0.00000128 | | Threaded Rod | 0.00237802 | | 0.1 kg Masses (2 masses) | 52.81235 | | 4 Wing Nuts | 0.17906103 | | **Total Moment of Inertia** | 55.99353033 | **Distance Measurements:** - Height (H): 0.720 m - Radius (r): 0.07 m **Experiment Data:** | Mass \( m \) (kg) | Time (s) | Average Time \( t \) (s) | Linear Acceleration \( a \) (m/s²) | Angular Acceleration \( \alpha \) (rad/s²) | Tension \( T \) (N) | Torque \( \tau \) (m·N) | |-------------------|--------------|--------------------------|-----------------------------------|---------------------------------------------|--------------------|--------------------------| | 0.050 (50 grams) | 25.49, 25.87 | 25.75 | | | | | | 0.100 (100 grams) | 17.06, 17.39 | 17.225 | | | | | | 0.150 (150 grams) | 11.64, 13.65 | 12.645 | | | | | | 0.200 (200 grams) | 16.94, 11.18 | 14.06 | | | | | | 0.250 (250 grams) | 9.36, 9.86 | 9.61 | | | | | **Formulas:** - Linear Acceleration: \( a = \frac{2H}{t^2} \) - Angular Acceleration: \( \alpha = \frac{a}{R} \) - Tension Calculation: \( T = m(g - a) \) with \( g = 9.80 \, \text{m/s}^2 \) - Torque
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Relativistic Energy and momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON