Atmospheric air is in parallel flow (1 10 m/s, T 15°C) over a flat heater surface that is to be maintained at a temperature of 90°C. The heater surface area is 0.25 m², and the airflow is known to induce a drag force of 0.17 N on the heater. What is the electrical power, in kW, needed to maintain the prescribed surface temperature? Use the modified Reynolds or Chilton-Colburn analogy. Evaluate properties for the air at 325 K. q=i kW

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.31P
icon
Related questions
Question
Atmospheric air is in parallel flow (u∞ = 10 m/s, T = 15°C) over a flat heater surface that is to be maintained at a temperature of
90°C. The heater surface area is 0.25 m², and the airflow is known to induce a drag force of 0.17 N on the heater. What is the electrical
power, in kW, needed to maintain the prescribed surface temperature? Use the modified Reynolds or Chilton-Colburn analogy.
Evaluate properties for the air at 325 K.
q= i
kW
Transcribed Image Text:Atmospheric air is in parallel flow (u∞ = 10 m/s, T = 15°C) over a flat heater surface that is to be maintained at a temperature of 90°C. The heater surface area is 0.25 m², and the airflow is known to induce a drag force of 0.17 N on the heater. What is the electrical power, in kW, needed to maintain the prescribed surface temperature? Use the modified Reynolds or Chilton-Colburn analogy. Evaluate properties for the air at 325 K. q= i kW
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning