Consider airflow over a flat plate of length L = 1 m. a) Evaluating the thermophysical properties of air at 400 K, determine the air velocity if the B.L. flow is observed to transition from laminar to turbulent at x = 0.3 m from the leading edge of the plate. b) The local convection coefficients in the laminar and turbulent boundary layers are, respectively, hlam(x) = Clamx-0.5 and hurb (x) = Cturb-x-0.2 where, Clam = 9.002 W/m³/2. Kand Cturb = 52.55 W/m¹.8 - K, and x has units of m. Develop an expression for the average convection coefficient, hlam (x), as a function of distance from the leading edge, x, for the laminar region, 0≤ x ≤ xc- c) Develop an expression for the average convection coefficient, turb (x), as a function of distance from the leading edge, x, for the turbulent region, xe ≤ x ≤ L.. d) Using the programming software of your choice, plot the local and average convection coefficients, hy and hx, respectively, as a function of x for 0 ≤ x ≤ L. e) If the plate has a depth into the page of 0.5 m and the surface and free stream temperatures are T₁ = 300 K and T∞ = 500 K, respectively, calculate the total heat transfer rate from the plate surface. f) Calculate the ratio of the heat transfer rates from the laminar and turbulent boundary layers, lam aturb

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Consider airflow over a flat plate of length L = 1 m.
a) Evaluating the thermophysical properties of air at 400 k, determine the air velocity
if the B.L. flow is observed to transition from laminar to turbulent at x = 0.3 m from
the leading edge of the plate.
b) The local convection coefficients in the laminar and turbulent boundary layers are,
respectively,
hlam(x) = Clam-x-0.5 and hurb(x) = Cturb-x-0.2
where, Clam = 9.002 W/m³/2. K and Cturb 52.55 W/m¹-8. K, and x has units of m.
Develop an expression for the average convection coefficient, hlam (x), as a function
of distance from the leading edge, x, for the laminar region, 0 ≤ x ≤ xc.
c) Develop an expression for the average convection coefficient, turb (x), as a function
of distance from the leading edge, x, for the turbulent region, xc ≤ x ≤ L..
d) Using the programming software of your choice, plot the local and average
convection coefficients, hx and hx, respectively, as a function of x for 0 ≤ x ≤ L.
e) If the plate has a depth into the page of 0.5 m and the surface and free stream
temperatures are T, = 300 K and T∞ = 500 K, respectively, calculate the total heat
transfer rate from the plate surface.
f) Calculate the ratio of the heat transfer rates from the laminar and turbulent
boundary layers,
qlam
qturb
=
Transcribed Image Text:Consider airflow over a flat plate of length L = 1 m. a) Evaluating the thermophysical properties of air at 400 k, determine the air velocity if the B.L. flow is observed to transition from laminar to turbulent at x = 0.3 m from the leading edge of the plate. b) The local convection coefficients in the laminar and turbulent boundary layers are, respectively, hlam(x) = Clam-x-0.5 and hurb(x) = Cturb-x-0.2 where, Clam = 9.002 W/m³/2. K and Cturb 52.55 W/m¹-8. K, and x has units of m. Develop an expression for the average convection coefficient, hlam (x), as a function of distance from the leading edge, x, for the laminar region, 0 ≤ x ≤ xc. c) Develop an expression for the average convection coefficient, turb (x), as a function of distance from the leading edge, x, for the turbulent region, xc ≤ x ≤ L.. d) Using the programming software of your choice, plot the local and average convection coefficients, hx and hx, respectively, as a function of x for 0 ≤ x ≤ L. e) If the plate has a depth into the page of 0.5 m and the surface and free stream temperatures are T, = 300 K and T∞ = 500 K, respectively, calculate the total heat transfer rate from the plate surface. f) Calculate the ratio of the heat transfer rates from the laminar and turbulent boundary layers, qlam qturb =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Fick’s Law of Diffusion and Mass Transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY