ate whether the following statements are true or false: a. The motion of a simple pendulum is simple harmonic motion. b. The motion of a simple pendulum is simple harmonic motion when the angle of deflection is small. For Part C, consider a simple pendulum that oscillates as a simple harmonic oscillator. If the mass of the pendulum doubles, what happens with the period of oscillations?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
State whether the following statements are true or false:
a. The motion of a simple pendulum is
b. The motion of a simple pendulum is simple harmonic motion when the angle of deflection is small.
For Part C, consider a simple pendulum that oscillates as a simple harmonic oscillator. If the mass of the pendulum doubles, what happens with the period of oscillations?
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Physics for Scientists and Engineers: Foundations…](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Classical Dynamics of Particles and Systems](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Physics for Scientists and Engineers: Foundations…](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Classical Dynamics of Particles and Systems](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![University Physics Volume 1](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Physics for Scientists and Engineers, Technology …](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)