At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t = 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The system may be assumed to be of first order.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the
fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t
= 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The
system may be assumed to be of first order.
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
Answer:
0
0.75
3
10
What is the DC gain of the system,
O 1
1.333
20
Let 8(t) be the function describing the temperature increase, i.e. 8(t) = T(t) - 25, where T is the actual temperature.
The input power is p(t) = 100 u(t) kW.
What is a feasible time delay, in minutes, for the system?
What is the transfer function
e(s) =
P(s)
30
e(s)
P(s)
40
50
(in C°/kW)?
60
e(s)
-? Provide at least 6 significant digits for the numerical coefficients.
P(s)
Transcribed Image Text:At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t = 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The system may be assumed to be of first order. 110.00 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 Answer: 0 0.75 3 10 What is the DC gain of the system, O 1 1.333 20 Let 8(t) be the function describing the temperature increase, i.e. 8(t) = T(t) - 25, where T is the actual temperature. The input power is p(t) = 100 u(t) kW. What is a feasible time delay, in minutes, for the system? What is the transfer function e(s) = P(s) 30 e(s) P(s) 40 50 (in C°/kW)? 60 e(s) -? Provide at least 6 significant digits for the numerical coefficients. P(s)
Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Analysis of Multiple Order System and Steady State Error
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,