At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t = 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The system may be assumed to be of first order.
At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t = 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The system may be assumed to be of first order.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question

Transcribed Image Text:At time = 0, a constant heating power of 100 kW is applied to a boiler that intends to raise the temperature of the
fluid inside to 100 °C. The initial temperature of the fluid is 25 °C. Temperature is taken every 2 minutes, starting at t
= 0. The log after 1 hour is shown below. The x-axis is time (in minutes) while the y-axis is the temperature T. The
system may be assumed to be of first order.
110.00
100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
Answer:
0
0.75
3
10
What is the DC gain of the system,
O 1
1.333
20
Let 8(t) be the function describing the temperature increase, i.e. 8(t) = T(t) - 25, where T is the actual temperature.
The input power is p(t) = 100 u(t) kW.
What is a feasible time delay, in minutes, for the system?
What is the transfer function
e(s) =
P(s)
30
e(s)
P(s)
40
50
(in C°/kW)?
60
e(s)
-? Provide at least 6 significant digits for the numerical coefficients.
P(s)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,